Optical nano-imaging of gate-tunable graphene plasmons

被引:1746
作者
Chen, Jianing [2 ,3 ,4 ]
Badioli, Michela [5 ]
Alonso-Gonzalez, Pablo [2 ]
Thongrattanasiri, Sukosin [1 ]
Huth, Florian [2 ,6 ]
Osmond, Johann [5 ]
Spasenovic, Marko [5 ]
Centeno, Alba [7 ]
Pesquera, Amaia [7 ]
Godignon, Philippe [8 ]
Zurutuza Elorza, Amaia [7 ]
Camara, Nicolas [9 ]
Javier Garcia de Abajo, F. [1 ]
Hillenbrand, Rainer [2 ,10 ]
Koppens, Frank H. L. [5 ]
机构
[1] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain
[2] CIC nanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[3] Ctr Fis Mat CSIC UPV EHU, Donostia San Sebastian 20018, Spain
[4] DIPC, Donostia San Sebastian 20018, Spain
[5] ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[6] Neaspec GmbH, D-82152 Munich, Germany
[7] Graphenea SA, Donostia San Sebastian 20018, Spain
[8] CSIC, IMB, CNM, Barcelona 08193, Spain
[9] Univ Tours, CNRS, UMR 7347, GREMAN, F-37071 Tours 2, France
[10] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
关键词
SCATTERING; DYNAMICS; SCALE;
D O I
10.1038/nature11254
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons-coupled excitations of photons and charge carriers-in graphene(1-5). In this two-dimensional sheet of carbon atoms(6), it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically(7,8), no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light(9-11). We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short-more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials(12), nanoscale optical processing, and strongly enhanced light-matter interactions for quantum devices(13) and biosensing applications.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 29 条
[1]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[2]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[3]   Current status of self-organized epitaxial graphene ribbons on the C face of 6H-SiC substrates [J].
Camara, Nicolas ;
Tiberj, Antoine ;
Jouault, Benoit ;
Caboni, Alessandra ;
Jabakhanji, Bilal ;
Mestres, Narcis ;
Godignon, Philippe ;
Camassel, Jean .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (37)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons [J].
Christensen, Johan ;
Manjavacas, Alejandro ;
Thongrattanasiri, Sukosin ;
Koppens, Frank H. L. ;
Javier Garcia de Abajo, F. .
ACS NANO, 2012, 6 (01) :431-440
[6]   Multicomponent magneto-optical conductivity of multilayer graphene on SiC [J].
Crassee, I. ;
Levallois, J. ;
van der Marel, D. ;
Walter, A. L. ;
Seyller, Th. ;
Kuzmenko, A. B. .
PHYSICAL REVIEW B, 2011, 84 (03)
[7]   Plasmon spectroscopy of free-standing graphene films [J].
Eberlein, T. ;
Bangert, U. ;
Nair, R. R. ;
Jones, R. ;
Gass, M. ;
Bleloch, A. L. ;
Novoselov, K. S. ;
Geim, A. ;
Briddon, P. R. .
PHYSICAL REVIEW B, 2008, 77 (23)
[8]   Infrared Nanoscopy of Dirac Plasmons at the Graphene-SiO2 Interface [J].
Fei, Zhe ;
Andreev, Gregory O. ;
Bao, Wenzhong ;
Zhang, Lingfeng M. ;
McLeod, Alexander S. ;
Wang, Chen ;
Stewart, Margaret K. ;
Zhao, Zeng ;
Dominguez, Gerardo ;
Thiemens, Mark ;
Fogler, Michael M. ;
Tauber, Michael J. ;
Castro-Neto, Antonio H. ;
Lau, Chun Ning ;
Keilmann, Fritz ;
Basov, Dimitri N. .
NANO LETTERS, 2011, 11 (11) :4701-4705
[9]   Local excitation, scattering, and interference of surface plasmons [J].
Hecht, B ;
Bielefeldt, H ;
Novotny, L ;
Inouye, Y ;
Pohl, DW .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1889-1892
[10]   Dielectric function and plasmons in graphene [J].
Hill, A. ;
Mikhailov, S. A. ;
Ziegler, K. .
EPL, 2009, 87 (02)