Assessing Non-Markovian Quantum Dynamics

被引:503
作者
Wolf, M. M. [1 ,2 ]
Eisert, J. [3 ,4 ]
Cubitt, T. S. [5 ]
Cirac, J. I. [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[3] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[4] Univ London Imperial Coll Sci Technol & Med, London SW7 2PE, England
[5] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.101.150402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate what a snapshot of a quantum evolution-a quantum channel reflecting open system dynamics-reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of "Markovianity" is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Fault-tolerant quantum computation with long-range correlated noise [J].
Aharonov, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[2]   Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points [J].
Boulant, N ;
Havel, TF ;
Pravia, MA ;
Cory, DG .
PHYSICAL REVIEW A, 2003, 67 (04) :12
[3]   Symmetrized characterization of noisy quantum processes [J].
Emerson, Joseph ;
Silva, Marcus ;
Moussa, Osama ;
Ryan, Colm ;
Laforest, Martin ;
Baugh, Jonathan ;
Cory, David G. ;
Laflamme, Raymond .
SCIENCE, 2007, 317 (5846) :1893-1896
[4]  
EVANS DE, 1977, COMM DUBLIN I ADV ST, V24, P104
[5]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[6]   Correlated projection operator approach to non-Markovian dynamics in spin baths [J].
Fischer, Jan ;
Breuer, Heinz-Peter .
PHYSICAL REVIEW A, 2007, 76 (05)
[7]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[8]   Quantum process tomography and Linblad estimation of a solid-state qubit [J].
Howard, M ;
Twamley, J ;
Wittmann, C ;
Gaebel, T ;
Jelezko, F ;
Wrachtrup, J .
NEW JOURNAL OF PHYSICS, 2006, 8
[9]   Computing integral points in convex semi-algebraic sets [J].
Khachiyan, L ;
Porkolab, L .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :162-171
[10]   EQUIVALENCE AND SOLUTION OF ANISOTROPIC SPIN-1 MODELS AND GENERALIZED T-J FERMION MODELS IN ONE DIMENSION [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :L955-L959