High-Performance Li-S Batteries with an Ultra-lightweight MWCNT-Coated Separator

被引:377
作者
Chung, Sheng-Heng
Manthiram, Arumugam [1 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 11期
关键词
LITHIUM-SULFUR BATTERIES; HIGH-CAPACITY; CATHODE; DISCHARGE; ELECTROCHEMISTRY; COMPOSITES; CHEMISTRY; GRAPHENE; IMPROVE; CELL;
D O I
10.1021/jz5006913
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A bifunctional separator consisting of a layer of multiwall carbon nanotubes (MWCNTs) on the cathode-side of a Celgard polypropylene sheet has been investigated to overcome the challenges of Li-S cells. The conductive/porous MVVCNT-coating functions (i) as an upper current collector to facilitate electron transport and high active-material utilization and (ii) as a filter to intercept/absorb the migrating polysulfides and thereby suppress the polysulfide diffusion. Also, the access to the electrolyte through the porous network of MWCNT along with its fast electronic transport facilitates the reutilization of the trapped active material and superior long-term cyclability. The MVVCNT-coating is lightweight (0.17 mg cm(-2)), yet allows the successful use of regular sulfur cathodes (high sulfur content of 70 wt %) with high discharge capacity, excellent rate performance, and long cycle life, demonstrating that the MWCNT-coated separator is a viable solution to practical Li-S batteries.
引用
收藏
页码:1978 / 1983
页数:6
相关论文
共 42 条
[1]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[4]   Rechargeable lithium sulfur battery - II. Rate capability and cycle characteristics [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A800-A805
[5]   A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for High-Performance Lithium-Sulfur Battery Cells [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
CHEMSUSCHEM, 2014, 7 (06) :1655-1661
[6]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[7]   Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 38 :91-95
[8]   Lithium-sulfur batteries with superior cycle stability by employing porous current collectors [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHIMICA ACTA, 2013, 107 :569-576
[9]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+
[10]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143