A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for High-Performance Lithium-Sulfur Battery Cells

被引:128
作者
Chung, Sheng-Heng [1 ,2 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
cell configuration; leaf; lithium-sulfur batteries; nanostructures; renewable resources; LI-S BATTERIES; LONG CYCLE LIFE; CATHODE MATERIALS; SUPERCAPACITORS; ELECTROLYTE; INTERLAYER; COST;
D O I
10.1002/cssc.201301287
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320mAhg(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98%, low capacity fade of 0.18% per cycle, and good long-term cyclability over 150cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries.
引用
收藏
页码:1655 / 1661
页数:7
相关论文
共 46 条
[1]   Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene [J].
Ania, CO ;
Bandosz, TJ .
LANGMUIR, 2005, 21 (17) :7752-7759
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[4]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[7]   Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 38 :91-95
[8]   Lithium-sulfur batteries with superior cycle stability by employing porous current collectors [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ELECTROCHIMICA ACTA, 2013, 107 :569-576
[9]   Nano-cellular carbon current collectors with stable cyclability for Li-S batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (34) :9590-9596
[10]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+