On an algorithm for the solution of generalized Prandtl equations

被引:6
作者
Calio', F [1 ]
Marchetti, E [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
D O I
10.1023/A:1014055824032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present and discuss an algorithm related to a numerical model, based on the modified quasi-interpolatory splines approximation. to solve generalized Prandtl integro-differential equations, with particular singular kernels.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 16 条
[1]   PRODUCT INTEGRATION OF LOGARITHMIC SINGULAR INTEGRANDS BASED ON CUBIC-SPLINES [J].
ALAYLIOGLU, A ;
LUBINSKY, DS ;
EYRE, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :353-366
[2]   ON THE NUMERICAL-SOLUTION OF THE GENERALIZED PRANDTL EQUATION USING VARIATION-DIMINISHING SPLINES [J].
CALIO, F ;
MARCHETTI, E ;
RABINOWITZ, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 60 (03) :297-307
[3]   An algorithm based on QI modified splines for singular integral models [J].
Caliò, F ;
Marchetti, E .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (12) :1579-1588
[4]  
CALIO F, 1997, REND IST LOMBARDO A, V131, P13
[5]  
CALIO F, 2000, ANN U FERRARA 7 S, V45
[6]   A fast algorithm for Prandtl's integro-differential equation [J].
Capobianco, MR ;
Criscuolo, G ;
Junghanns, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 77 (1-2) :103-128
[7]   NUMERICAL-INTEGRATION BASED ON QUASI-INTERPOLATING SPLINES [J].
DAGNINO, C ;
DEMICHELIS, V ;
SANTI, E .
COMPUTING, 1993, 50 (02) :149-163
[8]  
Dagnino C., 1993, NUMER ALGORITHMS, V5, P443
[9]  
de Boor C, 1978, PRACTICAL GUIDE SPLI, V27
[10]   THE USE OF MODIFIED QUASI-INTERPOLATORY SPLINES FOR THE SOLUTION OF THE PRANDTL EQUATION [J].
DEMICHELIS, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (03) :329-338