100-nm node lithography with KrF?

被引:16
作者
Fritze, M [1 ]
Tyrrell, B [1 ]
Astolfi, D [1 ]
Yost, D [1 ]
Davis, P [1 ]
Wheeler, B [1 ]
Mallen, R [1 ]
Jarmolowicz, J [1 ]
Cann, S [1 ]
Liu, HY [1 ]
Ma, M [1 ]
Chan, D [1 ]
Rhyins, P [1 ]
Carney, C [1 ]
Ferri, J [1 ]
Blachowicz, BA [1 ]
机构
[1] MIT, Lincoln Lab, Cambridge, MA 02139 USA
来源
OPTICAL MICROLITHOGRAPHY XIV, PTS 1 AND 2 | 2001年 / 4346卷
关键词
optical lithography; phase-shift mask; proximity effect correction;
D O I
10.1117/12.435719
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present results looking into the feasibility of 100-nm Node imaging using KrF, 248mn, exposure technology. This possibility is not currently envisioned by the 1999 ITRS Roadmap which lists 5 possible options for this 2005 Node, not including KrF. We show that double-exposure strong phase-shift, combined with two mask OPC, is capable of correcting the significant proximity effects present for 100-nm Node imaging at these low k(1) factors. We also introduce a new PSM Paradigm, dubbed "GRATEFUL", that can image aggressive 100-nm Node features without using OPC. This is achieved by utilizing an optimized "dense-only" imaging approach. The method also allows the re-use of a single PSM for multiple levels and designs, thus addressing the mask cost and turnaround time issues of concern in PSM technology.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 13 条
[1]  
CHAN D, 2001, SPIE, V4186, P911
[2]   Sub-100 nm silicon on insulator complimentary metal-oxide semiconductor transistors by deep ultraviolet optical lithography [J].
Fritze, M ;
Burns, J ;
Wyatt, PW ;
Chen, CK ;
Gouker, P ;
Chen, CL ;
Keast, C ;
Astolfi, D ;
Yost, D ;
Preble, D ;
Curtis, A ;
Davis, P ;
Cann, S ;
Deneault, S ;
Liu, HY .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :2886-2890
[3]   Application of chromeless phase-shift masks to sub-100 nm SOICMOS transistor fabrication [J].
Fritze, M ;
Burns, JM ;
Wyatt, PW ;
Astolfi, DK ;
Forte, T ;
Yost, D ;
Davis, P ;
Curtis, A ;
Preble, DM ;
Cann, S ;
Denault, S ;
Liu, HY ;
Shaw, JC ;
Sullivan, NT ;
Brandom, R ;
Mastovich, M .
OPTICAL MICROLITHOGRAPHY XIII, PTS 1 AND 2, 2000, 4000 :388-407
[4]   EXTENDING THE LIFETIME OF OPTICAL LITHOGRAPHY TECHNOLOGIES WITH WAVE-FRONT ENGINEERING [J].
LEVENSON, MD .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1994, 33 (12B) :6765-6773
[5]  
LEVENSON MD, 2001, SPIE, V4186, P395
[6]  
LIU HY, SEMI TECHN S STS, V99, P3
[7]   0.12 mu m hole pattern formation by KrF lithography for giga bit DRAM [J].
Nakao, S ;
Nakae, A ;
Yamaguchi, A ;
Kimura, H ;
Ohno, Y ;
Matsui, Y ;
Hirayama, M .
IEDM - INTERNATIONAL ELECTRON DEVICES MEETING, TECHNICAL DIGEST 1996, 1996, :61-64
[8]   The impact of optical enhancement techniques on the Mask error enhancement function (MEEF) [J].
Plat, M ;
Nguyen, K ;
Spence, C ;
Lyons, C ;
Wilkison, A .
OPTICAL MICROLITHOGRAPHY XIII, PTS 1 AND 2, 2000, 4000 :206-214
[9]  
SCHELLENBERG FM, 1999, SPIE, V3674, P261
[10]   Multilevel imaging system realizing k1=0.3 lithography [J].
Suzuki, A ;
Saitoh, K ;
Yoshii, M .
OPTICAL MICROLITHOGRAPHY XII, PTS 1 AND 2, 1999, 3679 :396-407