Soft nanotechnology with soft nanoparticles

被引:707
作者
Nayak, S [1 ]
Lyon, LA [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
关键词
hydrogels; materials science; nanostructures; polymers; self-assembly;
D O I
10.1002/anie.200501321
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The last decade of research in the physical sciences has seen a dramatic increase in the study of nanoscale materials. Today, "nanoscience" has emerged as a multidisciplinary effort, wherein obtaining a fundamental understanding of the optical, electrical, magnetic, and mechanical properties of nanostructures promises to deliver the next generation of functional materials for a wide range of applications. While this range of efforts is extremely broad, much of the work has focused on "hard" materials, such as Buckyballs, carbon nanotubes, metals, semiconductors, and organic or inorganic dielectrics. Meanwhile, the soft materials of current interest typically include conducting or emissive polymers for "plastic electronics" applications. Despite the continued interest in these established areas of nanoscience, new classes of soft nanomaterials are being developed from more traditional polymeric constructs. Specifically, nanostructured hydrogels are emerging as a promising group of materials for multiple biotechnology applications as the need for advanced materials in the post-genomic era grows. This review will present some of the recent advances in the marriage between water-swellable networks and nanoscience. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.
引用
收藏
页码:7686 / 7708
页数:23
相关论文
共 225 条
[1]   Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: Thermal stabilization with refolding of carbonic anhydrase B [J].
Akiyoshi, K ;
Sasaki, Y ;
Sunamoto, J .
BIOCONJUGATE CHEMISTRY, 1999, 10 (03) :321-324
[2]   STABILIZATION OF INSULIN UPON SUPRAMOLECULAR COMPLEXATION WITH HYDROPHOBIZED POLYSACCHARIDE NANOPARTICLE [J].
AKIYOSHI, K ;
NISHIKAWA, T ;
SHICHIBE, S ;
SUNAMOTO, J .
CHEMISTRY LETTERS, 1995, (08) :707-708
[3]   Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin [J].
Akiyoshi, K ;
Kobayashi, S ;
Shichibe, S ;
Mix, D ;
Baudys, M ;
Kim, SW ;
Sunamoto, J .
JOURNAL OF CONTROLLED RELEASE, 1998, 54 (03) :313-320
[4]   SELF-AGGREGATES OF HYDROPHOBIZED POLYSACCHARIDES IN WATER - FORMATION AND CHARACTERISTICS OF NANOPARTICLES [J].
AKIYOSHI, K ;
DEGUCHI, S ;
MORIGUCHI, N ;
YAMAGUCHI, S ;
SUNAMOTO, J .
MACROMOLECULES, 1993, 26 (12) :3062-3068
[5]   Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity [J].
Arotçaréna, M ;
Heise, B ;
Ishaya, S ;
Laschewsky, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (14) :3787-3793
[6]   Photonic crystal carbohydrate sensors: Low ionic strength sugar sensing [J].
Asher, SA ;
Alexeev, VL ;
Goponenko, AV ;
Sharma, AC ;
Lednev, IK ;
Wilcox, CS ;
Finegold, DN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (11) :3322-3329
[7]   Photonic crystal aqueous metal cation sensing materials [J].
Asher, SA ;
Sharma, AC ;
Goponenko, AV ;
Ward, MM .
ANALYTICAL CHEMISTRY, 2003, 75 (07) :1676-1683
[8]   DYNAMIC LIGHT-SCATTERING STUDY OF CONCENTRATED MICROGEL SOLUTIONS AS MESOSCOPIC MODEL OF THE GLASS-TRANSITION IN QUASI-ATOMIC FLUIDS [J].
BARTSCH, E ;
ANTONIETTI, M ;
SCHUPP, W ;
SILLESCU, H .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06) :3950-3963
[9]   Peptide-derivatized shell-cross-linked nanoparticles. 1. Synthesis and characterization [J].
Becker, ML ;
Remsen, EE ;
Pan, D ;
Wooley, KL .
BIOCONJUGATE CHEMISTRY, 2004, 15 (04) :699-709
[10]   Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation [J].
Becker, ML ;
Bailey, LO ;
Wooley, KL .
BIOCONJUGATE CHEMISTRY, 2004, 15 (04) :710-717