Binding of DNA Nucleobases and Nucleosides with Graphene

被引:463
作者
Varghese, Neenu [1 ,2 ]
Mogera, Umesha [1 ,2 ]
Govindaraj, Achutharao [1 ,2 ]
Das, Anindya [3 ]
Maiti, Prabal K. [3 ]
Sood, Ajay K. [3 ]
Rao, C. N. R. [1 ,2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, DST Nanosci Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, CSIR Ctr Excellence Chem, Bangalore 560064, Karnataka, India
[3] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
关键词
graphene; isothermal titration calorimetry; nanotubes; nucleobases; nucleosides; ISOTHERMAL TITRATION CALORIMETRY; GENERALIZED BORN MODEL; CARBON NANOTUBES; ADSORPTION; BASES;
D O I
10.1002/cphc.200800459
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interaction of two different samples of graphene with DNA nucleobases and nucleosides is investigated by isothermal titration calorimetry. The relative interaction energies of the nucleobases decrease in the order guanine (G) > adenine (A) > cytosine (C) > thy mine (T) in aqueous solutions, although the positions of C and T seem to be interchangeable. The same trend is found with the nucleosides. Interaction energies of the A-T and G-C pairs are somewhere between those of the constituent bases. Theoretical calculations including van der Wools interaction and solvation energies give the trend G > A similar to T > C. The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nonotubes.
引用
收藏
页码:206 / 210
页数:5
相关论文
共 19 条
[11]   DNA nucleoside interaction and identification with carbon nanotubes [J].
Meng, Sheng ;
Maragakis, Paul ;
Papaloukas, Costas ;
Kaxiras, Efthimios .
NANO LETTERS, 2007, 7 (01) :45-50
[12]   Modification of the generalized Born model suitable for macromolecules [J].
Onufriev, A ;
Bashford, D ;
Case, DA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (15) :3712-3720
[13]   Exploring protein native states and large-scale conformational changes with a modified generalized born model [J].
Onufriev, A ;
Bashford, D ;
Case, DA .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 55 (02) :383-394
[14]   Attracted by long-range electron correlation: Adenine on graphite [J].
Ortmann, F ;
Schmidt, WG ;
Bechstedt, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[15]   Functionalized single graphene sheets derived from splitting graphite oxide [J].
Schniepp, HC ;
Li, JL ;
McAllister, MJ ;
Sai, H ;
Herrera-Alonso, M ;
Adamson, DH ;
Prud'homme, RK ;
Car, R ;
Saville, DA ;
Aksay, IA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (17) :8535-8539
[16]   Adsorption of adenine and thymine and their radicals on single-wall carbon nanotubes [J].
Shtogun, Yaroslav V. ;
Woods, Lilia M. ;
Dovbeshko, Galina I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49) :18174-18181
[17]   Differential adsorption of nucleic acid bases: Relevance to the origin of life [J].
Sowerby, SJ ;
Cohn, CA ;
Heckl, WM ;
Holm, NG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :820-822
[18]   A study of graphenes prepared by different methods: characterization, properties and solubilization [J].
Subrahmanyam, K. S. ;
Vivekchand, S. R. C. ;
Govindaraj, A. ;
Rao, C. N. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (13) :1517-1523
[19]   van der Waals corrections to density functional theory calculations: Methane, ethane, ethylene, benzene, formaldehyde, ammonia, water, PBE, and CPMD [J].
Williams, Robert W. ;
Malhotra, Daksh .
CHEMICAL PHYSICS, 2006, 327 (01) :54-62