Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries

被引:104
作者
Chen, Yong [1 ,2 ]
Li, Fujun [1 ,3 ]
Tang, Dai-Ming [4 ,5 ]
Jian, Zelang [1 ]
Liu, Chang [6 ]
Golberg, Dmitri [4 ,5 ]
Yamada, Atsuo [3 ]
Zhou, Haoshen [1 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
[2] Hainan Univ, Hainan Prov Key Lab Res Utilizat Si Zr Ti Resourc, Minist Educ, Key Lab Trop Biol Resources, Haikou 570228, Peoples R China
[3] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[4] NIMS, ICYS, Tsukuba, Ibaraki 3050044, Japan
[5] NIMS, World Premier Int WPI Ctr Mat Nanoarchitecton MAN, Tsukuba, Ibaraki 3050044, Japan
[6] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-OXYGEN BATTERIES; AIR BATTERIES; RECENT PROGRESS; CATALYSTS; RECHARGEABILITY; PERFORMANCE; ELECTRODE;
D O I
10.1039/c3ta11792h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multi-walled carbon nanotubes (MWCNTs) were interpenetrated together to form a 3-dimensional porous structure, multi-walled carbon nanotube paper (WCNTP), by a floating catalyst method. The as-synthesized MWCNTP was employed as an air cathode for non-aqueous Li-O-2 batteries without the addition of any binder or conductive additives. A huge specific capacity of 34 600 mA h g(-1) could be obtained at a current density of 500 mA g(-1). 50 cycles of continuous discharge and charge have been achieved with no capacity loss at 250 mA g(-1), with a cut-off capacity of 1000 mA h g(-1). The reversible formation and decomposition of the discharge product Li2O2 was clearly revealed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). These results suggest the great potential of the binder-free MWCNTPs as air cathodes for Li-O-2 batteries with high energy density.
引用
收藏
页码:13076 / 13081
页数:6
相关论文
共 28 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures [J].
Bai, S ;
Li, F ;
Yang, QH ;
Cheng, HM ;
Bai, J .
CHEMICAL PHYSICS LETTERS, 2003, 376 (1-2) :83-89
[3]   The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries [J].
Black, Robert ;
Lee, Jin-Hyon ;
Adams, Brian ;
Mims, Charles A. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :392-396
[4]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Lithium-air and lithium-sulfur batteries [J].
Bruce, Peter G. ;
Hardwick, Laurence J. ;
Abraham, K. M. .
MRS BULLETIN, 2011, 36 (07) :506-512
[7]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[8]   Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH [J].
Chen, Y ;
Liu, C ;
Li, F ;
Cheng, HM .
JOURNAL OF POROUS MATERIALS, 2006, 13 (02) :141-146
[9]   Chemical and Morphological Changes of Li-O2 Battery Electrodes upon Cycling [J].
Gallant, Betar M. ;
Mitchell, Robert R. ;
Kwabi, David G. ;
Zhou, Jigang ;
Zuin, Lucia ;
Thompson, Carl V. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (39) :20800-20805
[10]   Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries [J].
Jung, Hun-Gi ;
Jeong, Yo Sub ;
Park, Jin-Bum ;
Sun, Yang-Kook ;
Scrosati, Bruno ;
Lee, Yun Jung .
ACS NANO, 2013, 7 (04) :3532-3539