Adaptive-feedback control algorithm

被引:77
作者
Huang, Debin
机构
[1] Max Planck Inst Brain Res, Dept Neurophysiol, D-60528 Frankfurt, Germany
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevE.73.066204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.
引用
收藏
页数:8
相关论文
共 11 条
[1]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]   Simple adaptive-feedback controller for identical chaos synchronization [J].
Huang, DB .
PHYSICAL REVIEW E, 2005, 71 (03)
[4]  
Huang DB, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.067201
[5]   Stabilizing near-nonhyperbolic chaotic systems with applications [J].
Huang, DB .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[6]   Identifying parameter by identical synchronization between different systems [J].
Huang, DB ;
Guo, RW .
CHAOS, 2004, 14 (01) :152-159
[7]  
LaSalle J., 1960, IRE T CIRCUIT THEORY, V7, P520, DOI [10.1109/TCT.1960.1086720, DOI 10.1109/TCT.1960.1086720]
[8]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[9]   Estimating model parameters from time series by autosynchronization [J].
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1232-1235
[10]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824