Evolution of Bacillus thuringiensis Cry toxins insecticidal activity

被引:215
作者
Bravo, Alejandra [1 ]
Gomez, Isabel [1 ]
Porta, Helena [1 ]
Ines Garcia-Gomez, Blanca [1 ]
Rodriguez-Almazan, Claudia [1 ]
Pardo, Liliana [1 ]
Soberon, Mario [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Biotecnol, Cuernavaca 62250, Morelos, Mexico
来源
MICROBIAL BIOTECHNOLOGY | 2013年 / 6卷 / 01期
关键词
MODIFIED BT TOXINS; DELTA-ENDOTOXIN; PHAGE DISPLAY; DOMAIN-II; CRYSTAL PROTEINS; FIELD-RESISTANCE; MANDUCA-SEXTA; TOXICITY; BINDING; SPECIFICITY;
D O I
10.1111/j.1751-7915.2012.00342.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 63 条
[1]   Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering [J].
Abdullah, MAF ;
Alzate, O ;
Mohammad, M ;
McNall, RJ ;
Adang, MJ ;
Dean, DH .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5343-5353
[2]   Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) [J].
Alejandro Lopez-Pazos, Silvio ;
Cortazar Gomez, Jorge Eduardo ;
Ceron Salamanca, Jairo Alonso .
JOURNAL OF INVERTEBRATE PATHOLOGY, 2009, 101 (03) :242-245
[3]   Participation of Valine 171 in α-Helix 5 of Bacillus thuringiensis Cry1Ab δ-Endotoxin in Translocation of Toxin into Lymantria dispar Midgut Membranes [J].
Alzate, Oscar ;
Osorio, Cristina ;
Florez, Alvaro M. ;
Dean, Donald H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (23) :7878-7880
[4]  
[Anonymous], 2010, APPL ENVIRON MICROB, DOI DOI 10.1128/AEM.00155-10
[5]   Role of Alkaline Phosphatase from Manduca sexta in the Mechanism of Action of Bacillus thuringiensis Cry1Ab Toxin [J].
Arenas, Ivan ;
Bravo, Alejandra ;
Soberon, Mario ;
Gomez, Isabel .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (17) :12497-12503
[6]   Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin [J].
Atsumi, S ;
Mizuno, E ;
Hara, H ;
Nakanishi, K ;
Kitami, M ;
Miura, N ;
Tabunoki, H ;
Watanabe, A ;
Sato, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (07) :3966-3977
[7]   Phage display technology: clinical applications and recent innovations [J].
Azzazy, HME ;
Highsmith, WE .
CLINICAL BIOCHEMISTRY, 2002, 35 (06) :425-445
[8]   INDIA Hardy Cotton-Munching Pests Are Latest Blow to GM Crops [J].
Bagla, Pallava .
SCIENCE, 2010, 327 (5972) :1439-1439
[9]   Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera [J].
Baxter, Simon W. ;
Badenes-Perez, Francisco R. ;
Morrison, Anna ;
Vogel, Heiko ;
Crickmore, Neil ;
Kain, Wendy ;
Wang, Ping ;
Heckel, David G. ;
Jiggins, Chris D. .
GENETICS, 2011, 189 (02) :675-U814
[10]   RECOMBINANT BACILLUS-THURINGIENSIS CRYSTAL PROTEINS WITH NEW PROPERTIES - POSSIBILITIES FOR RESISTANCE MANAGEMENT [J].
BOSCH, D ;
SCHIPPER, B ;
VANDERKLEIJ, H ;
DEMAAGD, RA ;
STIEKEMA, WJ .
BIO-TECHNOLOGY, 1994, 12 (09) :915-918