Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons

被引:99
作者
Adam, S. [1 ]
Cho, S. [2 ]
Fuhrer, M. S. [2 ]
Das Sarma, S. [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.101.046404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced length scale), we predict that there should be a dimensional crossover to the 1D percolation universality class with observable signatures in the transport gap. In addition, there should be a crossover to the Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical density are consistent with this percolation transition scenario.
引用
收藏
页数:4
相关论文
共 29 条
[21]   Transport and percolation in a low-density high-mobility two-dimensional hole system [J].
Manfra, M. J. ;
Hwang, E. H. ;
Das Sarma, S. ;
Pfeiffer, L. N. ;
West, K. W. ;
Sergent, A. M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (23)
[22]  
MARTIN I, ARXIV07050532V2
[23]   Observation of electron-hole puddles in graphene using a scanning single-electron transistor [J].
Martin, J. ;
Akerman, N. ;
Ulbricht, G. ;
Lohmann, T. ;
Smet, J. H. ;
Von Klitzing, K. ;
Yacoby, A. .
NATURE PHYSICS, 2008, 4 (02) :144-148
[24]  
NAKADA K, 1996, PHYS REV B, V54, P1754
[25]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[26]  
ROSSI E, ARXIV08030963V1
[27]   Coulomb blockade in graphene nanoribbons [J].
Sols, F. ;
Guinea, F. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[28]   Measurement of scattering rate and minimum conductivity in graphene [J].
Tan, Y. -W. ;
Zhang, Y. ;
Bolotin, K. ;
Zhao, Y. ;
Adam, S. ;
Hwang, E. H. ;
Das Sarma, S. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)
[29]   Quasiparticle energies and band gaps in graphene nanoribbons [J].
Yang, Li ;
Park, Cheol-Hwan ;
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)