Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery

被引:71
作者
Duan, Huanan [1 ]
Gnanaraj, Joe [2 ]
Chen, Xiangping [1 ,3 ]
Li, Boquan [1 ]
Liang, Jianyu [1 ]
机构
[1] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA
[2] Yardney Tech Prod Inc, Pawcatuck, CT 06379 USA
[3] S China Univ Technol, Coll Mat Sci & Technol, Guangzhou 510644, Guangdong, Peoples R China
关键词
Nanostructured electrodes; Anode; Rapid rechargable Li-ion batteries; Template-assisted electrodeposition;
D O I
10.1016/j.jpowsour.2008.06.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe3O4-based Cu nanostructured electrodes for Li-ion cells are fabricated by a two-step electrochemical process. Cu nanorod arrays acting as current collectors are first prepared on a thin copper disk by alumina template-assisted electrodeposition. The active material of Fe3O4 is electrochemically deposited onto the Cu nanorod arrays by potentiostatic deposition. X-ray diffraction identifies textured growth for both the Cu nanorods and Fe3O4. Scanning electron microscopic observation further reveals that the active material are deposited between the Cu nanorods, and a 30s deposition of Fe3O4 is sufficient to fill up the inter-rod space under the currently employed condition. Longer electroplating time leads to the coalescence of Fe3O4 particles and the formation of bulky Fe3O4 islands on the top of the Cu nanorods. Electrochemical properties of the nanostructured electrodes are studied by conventional charge/discharge tests. The results show that the rate capabilities of the nanostructured electrodes are better compared to those of the planar electrodes and the coalescence of Fe3O4 particles is detrimental to achieve sustained reversible capacities. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:512 / 518
页数:7
相关论文
共 23 条
  • [11] Effect of particle size on lithium intercalation into α-Fe2O3
    Larcher, D
    Masquelier, C
    Bonnin, D
    Chabre, Y
    Masson, V
    Leriche, JB
    Tarascon, JM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (01) : A133 - A139
  • [12] H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability
    Li, JR
    Tang, ZL
    Zhang, ZT
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) : 62 - 67
  • [13] Nanomaterial-based Li-ion battery electrodes
    Li, NC
    Martin, CR
    Scrosati, B
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 240 - 243
  • [14] Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications
    Liang, JY
    Chik, H
    Xu, J
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (05) : 998 - 1008
  • [15] Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition
    Mitra, Sagar
    Poizot, Philippe
    Finke, Alexandre
    Tarascon, Jean-Marie
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (17) : 2281 - 2287
  • [16] The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials
    Park, Min-Sik
    Kang, Yong-Mook
    Wang, Gou-Xiu
    Dou, Shi-Xue
    Liu, Hua-Kun
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (03) : 455 - 461
  • [17] Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries
    Poizot, P
    Laruelle, S
    Grugeon, S
    Dupont, L
    Tarascon, JM
    [J]. NATURE, 2000, 407 (6803) : 496 - 499
  • [18] Nanoscale materials for lithium-ion batteries
    Sides, CR
    Li, NC
    Patrissi, CJ
    Scrosati, B
    Martin, CR
    [J]. MRS BULLETIN, 2002, 27 (08) : 604 - 607
  • [19] Nanocrystalline TiO2 (anatase) for Li-ion batteries
    Subramanian, V.
    Karki, A.
    Gnanasekar, K. I.
    Eddy, Fannie Posey
    Rambabu, B.
    [J]. JOURNAL OF POWER SOURCES, 2006, 159 (01) : 186 - 192
  • [20] High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
    Taberna, L.
    Mitra, S.
    Poizot, P.
    Simon, P.
    Tarascon, J. -M.
    [J]. NATURE MATERIALS, 2006, 5 (07) : 567 - 573