Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli

被引:200
作者
Covert, Markus W. [1 ]
Xiao, Nan [1 ]
Chen, Tiffany J. [2 ]
Karr, Jonathan R. [1 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Program Biomed Informat, Stanford, CA 94305 USA
关键词
D O I
10.1093/bioinformatics/btn352
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The effort to build a whole-cell model requires the development of new modeling approaches, and in particular, the integration of models for different types of processes, each of which may be best described using different representation. Flux-balance analysis (FBA) has been useful for large-scale analysis of metabolic networks, and methods have been developed to incorporate transcriptional regulation (regulatory FBA, or rFBA). Of current interest is the integration of these approaches with detailed models based on ordinary differential equations (ODEs). Results: We developed an approach to modeling the dynamic behavior of metabolic, regulatory and signaling networks by combining FBA with regulatory Boolean logic, and ordinary differential equations. We use this approach (called integrated FBA, or iFBA) to create an integrated model of Escherichia coli which combines a flux-balance-based, central carbon metabolic and transcriptional regulatory model with an ODE-based, detailed model of carbohydrate uptake control. We compare the predicted Escherichia coli wild-type and single gene perturbation phenotypes for diauxic growth on glucose/lactose and glucose/glucose-6-phosphate with that of the individual models. We find that iFBA encapsulates the dynamics of three internal metabolites and three transporters inadequately predicted by rFBA. Furthermore, we find that iFBA predicts different and more accurate phenotypes than the ODE model for 85 of 334 single gene perturbation simulations, as well for the wild-type simulations. We conclude that iFBA is a significant improvement over the individual rFBA and ODE modeling paradigms.
引用
收藏
页码:2044 / 2050
页数:7
相关论文
共 24 条
[1]   A quantitative approach to catabolite repression in Escherichia coli [J].
Bettenbrock, K ;
Fischer, S ;
Kremling, A ;
Jahreis, K ;
Sauter, T ;
Gilles, ED .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (05) :2578-2584
[2]   Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12 [J].
Bettenbrock, Katja ;
Sauter, Thomas ;
Jahreis, Knut ;
Kremling, Andreas ;
Lengeler, Joseph W. ;
Gilles, Ernst-Dieter .
JOURNAL OF BACTERIOLOGY, 2007, 189 (19) :6891-6900
[3]   Optimization-based framework for inferring and testing hypothesized metabolic objective functions [J].
Burgard, AP ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 82 (06) :670-677
[4]   MALATE DEHYDROGENASE MUTANTS IN ESCHERICHIA-COLI K-12 [J].
COURTRIGHT, JB ;
HENNING, U .
JOURNAL OF BACTERIOLOGY, 1970, 102 (03) :722-+
[5]   Integrating high-throughput and computational data elucidates bacterial networks [J].
Covert, MW ;
Knight, EM ;
Reed, JL ;
Herrgard, MJ ;
Palsson, BO .
NATURE, 2004, 429 (6987) :92-96
[6]   Transcriptional regulation in constraints-based metabolic models of Escherichia coli [J].
Covert, MW ;
Palsson, BO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (31) :28058-28064
[7]   Regulation of gene expression in flux balance models of metabolism [J].
Covert, MW ;
Schilling, CH ;
Palsson, B .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 213 (01) :73-88
[8]   A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information [J].
Feist, Adam M. ;
Henry, Christopher S. ;
Reed, Jennifer L. ;
Krummenacker, Markus ;
Joyce, Andrew R. ;
Karp, Peter D. ;
Broadbelt, Linda J. ;
Hatzimanikatis, Vassily ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3
[9]  
Ingraham J. L., 1983, GROWTH BACTERIAL CEL
[10]   Analysis of global control of Escherichia coli carbohydrate uptake [J].
Kremling, Andreas ;
Bettenbrock, Katja ;
Gilles, Ernst Dieter .
BMC SYSTEMS BIOLOGY, 2007, 1