Evolution of elastic curves in Rn:: Existence and computation

被引:144
作者
Dziuk, G
Kuwert, E
Schätzle, R
机构
[1] Inst Angew Math, D-79104 Freiburg, Germany
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
[3] ETH Zurich, Dept Math, CH-8092 Zurich, Switzerland
关键词
geometric evolution equations; fourth order; elastic curves; algorithms; computations;
D O I
10.1137/S0036141001383709
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider curves in R-n moving by the gradient flow for elastic energy, i.e., the L-2 integral of curvature. Long-time existence is proved in the two cases when a multiple of length is added to the energy or the length is fixed as a constraint. Along these lines, a lower bound for the lifespan of solutions to the curve diffusion flow is observed. We derive algorithms for both the elastic flows and the curve diffusion equation. After a numerical test we compute several examples, including cases of curve diffusion in which a singularity develops.
引用
收藏
页码:1228 / 1245
页数:18
相关论文
共 14 条
[1]  
Andrews B, 1999, J REINE ANGEW MATH, V506, P43
[2]  
AUBIN T, 1982, GRUNLEHREN MATH WISS, V252
[3]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[5]   Discrete anisotropic curve shortening flow [J].
Dziuky, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (06) :1808-1830
[6]   The surface diffusion flow for immersed hypersurfaces [J].
Escher, J ;
Mayer, UF ;
Simonett, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1419-1433
[7]  
Koiso N., 1996, SEMIN C, V1, P403
[8]   CURVE STRAIGHTENING AND A MINIMAX ARGUMENT FOR CLOSED ELASTIC CURVES [J].
LANGER, J ;
SINGER, DA .
TOPOLOGY, 1985, 24 (01) :75-88
[9]   KNOTTED ELASTIC CURVES IN R3 [J].
LANGER, J ;
SINGER, DA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (DEC) :512-520
[10]  
POLDEN A, 1995, 13 U TUB