Deciphering the roles of the histone H2BN-terminal domain in genome-wide transcription

被引:76
作者
Parra, Michael A. [1 ]
Kerr, David [1 ]
Fahy, Deirdre [1 ]
Pouchnik, Derek J. [1 ]
Wyrick, John J. [1 ]
机构
[1] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA
关键词
D O I
10.1128/MCB.26.10.3842-3852.2006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone N-terminal domains are frequent targets of posttranslational modifications. Multiple acetylated lysine residues have been identified in the N-terminal domain of H2B (K6, K11, K16, K17, K21, and K22), but little is known about how these modifications regulate transcription. We systematically mutated the N-terminal domain of histone H2B, both at known sites of lysine acetylation and elsewhere, and characterized the resulting changes in genome-wide expression in each mutant strain. Our results indicate that known sites of lysine acetylation in this domain are required for gene-specific transcriptional activation. However, the entire H2B N-terminal domain is principally required for the transcriptional repression of a large subset of the yeast genome. We find that the histone H2B repression (HBR) domain, comprised of residues 30 to 37, is necessary and sufficient for this repression. Many of the genes repressed by the HBR domain are located adjacent to telomeres or function in vitamin and carbohydrate metabolism. Deletion of the HBR domain also confers an increased sensitivity to DNA damage by UV irradiation. We mapped the critical residues in the HBR domain required for its repression function. Finally, comparisons of these data with previous studies reveal that a surprising number of genes are coregulated by the N-terminal domains of histone H2B, H3, and H4.
引用
收藏
页码:3842 / 3852
页数:11
相关论文
共 34 条
[1]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[2]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[3]   Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution [J].
Davey, CA ;
Sargent, DF ;
Luger, K ;
Maeder, AW ;
Richmond, TJ .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (05) :1097-1113
[4]   Genomic characterization reveals a simple histone H4 acetylation code [J].
Dion, MF ;
Altschuler, SJ ;
Wu, LF ;
Rando, OJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (15) :5501-5506
[5]   Controlling the double helix [J].
Felsenfeld, G ;
Groudine, M .
NATURE, 2003, 421 (6921) :448-453
[6]   Binary switches and modification cassettes in histone biology and beyond [J].
Fischle, W ;
Wang, YM ;
Allis, CD .
NATURE, 2003, 425 (6957) :475-479
[7]   Nucleotide excision repair in chromatin and the right of entry [J].
Gong, F ;
Kwon, Y ;
Smerdon, MJ .
DNA REPAIR, 2005, 4 (08) :884-896
[8]   A ROLE FOR HISTONES H2A/H2B IN CHROMATIN FOLDING AND TRANSCRIPTIONAL REPRESSION [J].
HANSEN, JC ;
WOLFFE, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2339-2343
[9]   Functional consequences of histone modifications [J].
Iizuka, M ;
Smith, MM .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (02) :154-160
[10]   Translating the histone code [J].
Jenuwein, T ;
Allis, CD .
SCIENCE, 2001, 293 (5532) :1074-1080