Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy

被引:185
作者
Govyadinov, Alexander A. [1 ]
Amenabar, Iban [1 ]
Huth, Florian [1 ,2 ]
Carney, P. Scott [3 ,4 ]
Hillenbrand, Rainer [1 ,5 ]
机构
[1] CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[2] Neaspec GmbH, D-82152 Martinsried, Germany
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[5] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2013年 / 4卷 / 09期
基金
欧洲研究理事会;
关键词
OPTICAL MICROSCOPY; ANALYTICAL-MODEL; SPECTROSCOPY; NANOPARTICLES;
D O I
10.1021/jz400453r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far field ellipsometric data We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.
引用
收藏
页码:1526 / 1531
页数:6
相关论文
共 39 条
[31]  
Roeseler A., 1990, Infrared Spectroscopic Ellipsometry
[32]   Nanoscale Free-Carrier Profiling of Individual Semiconductor Nanowires by Infrared Near-Field Nanoscopy [J].
Stiegler, J. M. ;
Huber, A. J. ;
Diedenhofen, S. L. ;
Rivas, J. Gomez ;
Algra, R. E. ;
Bakkers, E. P. A. M. ;
Hillenbrand, R. .
NANO LETTERS, 2010, 10 (04) :1387-1392
[33]   Nanoscale Infrared Absorption Spectroscopy of Individual Nanoparticles Enabled by Scattering-Type Near-Field Microscopy [J].
Stiegler, Johannes M. ;
Abate, Yohannes ;
Cvitkovic, Antonija ;
Romanyuk, Yaroslav E. ;
Huber, Andreas J. ;
Leone, Stephen R. ;
Hillenbrand, Rainer .
ACS NANO, 2011, 5 (08) :6494-6499
[34]  
Taubner T, 2005, J KOREAN PHYS SOC, V47, pS213
[35]   Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy [J].
Taubner, T ;
Keilmann, F ;
Hillenbrand, R .
OPTICS EXPRESS, 2005, 13 (22) :8893-8899
[36]   Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy [J].
Taubner, T ;
Hillenbrand, R ;
Keilmann, F .
APPLIED PHYSICS LETTERS, 2004, 85 (21) :5064-5066
[37]   Performance of visible and mid-infrared scattering-type near-field optical microscopes [J].
Taubner, T ;
Hillenbrand, R ;
Keilmann, F .
JOURNAL OF MICROSCOPY-OXFORD, 2003, 210 (03) :311-314
[38]   Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity [J].
Xu, Xiaoji G. ;
Rang, Mathias ;
Craig, Ian M. ;
Raschke, Markus B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (13) :1836-1841
[39]   Near-field spectroscopy of silicon dioxide thin films [J].
Zhang, L. M. ;
Andreev, G. O. ;
Fei, Z. ;
McLeod, A. S. ;
Dominguez, G. ;
Thiemens, M. ;
Castro-Neto, A. H. ;
Basov, D. N. ;
Fogler, M. M. .
PHYSICAL REVIEW B, 2012, 85 (07)