Protein kinases as targets for anti-parasitic chemotherapy

被引:113
作者
Doerig, C [1 ]
机构
[1] Univ Glasgow, Wellcome Ctr Mol Pathol, Glasgow G11 6NU, Lanark, Scotland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2004年 / 1697卷 / 1-2期
关键词
parasite; phosphorylation; protein kinase inhibitor; drug target; drug screening;
D O I
10.1016/j.bbapap.2003.11.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Parasitic protozoa infecting humans have a staggering impact on public health, especially in the developing world. Furthermore, several protozoan species are major pathogens of domestic animals and have a considerable impact on food production. In many instances, the parasites have developed resistance against available chemotherapeutic agents, making the search for alternative drugs a priority. In line with the current interest in protein kinases inhibitors as potential drugs against a variety of diseases, the possibility that protein kinases may represent targets for novel anti-parasitic agents is being explored. Research into parasite protein kinases has benefited greatly from genome and EST sequencing projects, with the genomes of a few species fully sequenced (notably that of the human malaria parasite Plasmodilum falciparum) and several more under way. The overall picture that emerged from research in this area shows that the phylogenetic isolation of parasitic protozoa is reflected by atypical structural and functional properties of many of their protein kinase homologues. Likewise, evidence is emerging, which suggests that the organisation of some otherwise well-conserved signal transduction pathways is divergent in some parasitic species. The differences between protein kinases of a parasite and their homologues in its host cell suggest that specific inhibition of the former can be achieved. The development of anti-parasitic drugs based on protein kinase inhibition is being pursued following two avenues: one consists of screening chemical libraries on recombinant enzymes; several protein kinases from parasitic protozoa are now available for this approach. The second approach relies on the identification of the molecular targets of kinase inhibitors which display anti-parasitic properties. This has led to promising developments in a few instances, in particular regarding PKG as a drug target against Eimeria and Toxoplasma, and purvalanol B, a purine-based CDK inhibitor which appears to affect unexpected targets in several protozoan parasites. The recent resolution of the structure of a Plasniodium protein kinase complexed with small inhibitory molecules opens the way to a rational approach towards the design of anti-parasitic drugs based on kinase inhibition. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 93 条
[61]   Identification and initial characterization of three novel cyclin-related proteins of the human malaria parasite Plasmodium falciparum [J].
Merckx, A ;
Le Roch, K ;
Nivez, MP ;
Dorin, D ;
Alano, P ;
Gutierrez, GJ ;
Nebreda, AR ;
Goldring, D ;
Whittle, C ;
Patterson, S ;
Chakrabarti, D ;
Doerig, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (41) :39839-39850
[62]   Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana [J].
Mottram, JC ;
McCready, BP ;
Brown, KG ;
Grant, KM .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :573-582
[63]   A FAMILY OF TRYPANOSOME CDC2-RELATED PROTEIN-KINASES [J].
MOTTRAM, JC ;
SMITH, G .
GENE, 1995, 162 (01) :147-152
[64]   PURIFICATION OF PARTICULATE MALATE-DEHYDROGENASE AND PHOSPHOENOL PYRUVATE CARBOXYKINASE FROM LEISHMANIA-MEXICANA-MEXICANA [J].
MOTTRAM, JC ;
COOMBS, GH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 827 (03) :310-319
[65]   Stage-specific requirement of a mitogen-activated protein kinase by Trypanosoma brucei [J].
Müller, IB ;
Domenicali-Pfister, D ;
Roditi, I ;
Vassella, E .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (11) :3787-3799
[66]  
Musrati RA, 1998, GEN PHYSIOL BIOPHYS, V17, P193
[67]   Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes [J].
Myler, PJ ;
Audleman, L ;
DeVos, T ;
Hixson, G ;
Kiser, P ;
Lemley, C ;
Magness, C ;
Rickel, E ;
Sisk, E ;
Sunkin, S ;
Swartzell, S ;
Westlake, T ;
Bastien, P ;
Fu, GL ;
Ivens, A ;
Stuart, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :2902-2906
[68]   Molecular cloning and expression of a stress-responsive mitogen-activated protein kinase-related kinase from Tetrahymena cells [J].
Nakashima, S ;
Wang, SL ;
Hisamoto, N ;
Sakai, H ;
Andoh, M ;
Matsumoto, K ;
Nozawa, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :9976-9983
[69]   Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy [J].
Parker, MD ;
Hyde, RJ ;
Yao, SYM ;
McRobert, L ;
Cass, CE ;
Young, JD ;
McConkey, GA ;
Baldwin, SA .
BIOCHEMICAL JOURNAL, 2000, 349 (01) :67-75
[70]   PROTEIN-KINASES IN DIVERGENT EUKARYOTES - IDENTIFICATION OF PROTEIN-KINASE ACTIVITIES REGULATED DURING TRYPANOSOME DEVELOPMENT [J].
PARSONS, M ;
VALENTINE, M ;
CARTER, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2656-2660