Inkjet-printed polymer thin-film transistors: Enhancing performances by contact resistances engineering

被引:27
作者
Barret, Mickael [1 ]
Sanaur, Sebastien [1 ]
Collot, Philippe [1 ]
机构
[1] Ecole Natl Super Mines, Provence Microelect Ctr, Dept Packaging & Flexible Substrates, F-13541 Gardanne, France
关键词
Contact resistance; PFETs; Inkjet printing;
D O I
10.1016/j.orgel.2008.08.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we demonstrate how to enhance polymer thin-film transistors (PTFTs) performances made by low-cost inkjet printing technique. Indeed, in PTFTs, contact resistances between semiconducting conjugated polymers (SCPs) and Source and Drain (S&D) contacts may dominate the transport properties of such electronic devices. Here, we report measurements of these parasitic resistances for several couples of (i) SCPs, as active material, and (ii) electrodes, as S&D contacts, in bottom-contact inkjetted PTFTs. The differences in PTFT performances are discussed upon these contact resistance. For this, we evaluate the performances of several inkjetted couples of SCP/S&D compared to devices with evaporated metal-based S&D. By this way, we show that inkjet printing is a suitable low-cost technique to dispense polymers and inorganic nanoparticles for direct-writing of PTFTs. A significant reduction in the contact resistance R-C was achieved when inkjetted Pedot:Pss-based S&D electrodes are used instead of evaporated metal-based S&D electrodes. The improved efficiency of charge carrier injection is assumed to be due to the formation of a p-doped interfacial layer at the interface between the SCP and the S&D electrodes. All these results pave the way towards flexible electronics applications by using inkjetted polymers both for electrodes and semiconducting active layer on flexible plastic substrate. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1093 / 1100
页数:8
相关论文
共 39 条
[1]   Doped conducting-polymer-semiconducting-polymer interfaces:: Their use in organic photovoltaic devices [J].
Arias, AC ;
Granström, M ;
Thomas, DS ;
Petritsch, K ;
Friend, RH .
PHYSICAL REVIEW B, 1999, 60 (03) :1854-1860
[2]   Contact resistance in organic thin film transistors [J].
Blanchet, GB ;
Fincher, CR ;
Lefenfeld, M ;
Rogers, JA .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :296-298
[3]   Noncontact potentiometry of polymer field-effect transistors [J].
Bürgi, L ;
Sirringhaus, H ;
Friend, RH .
APPLIED PHYSICS LETTERS, 2002, 80 (16) :2913-2915
[4]   Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents [J].
Chang, JF ;
Sun, BQ ;
Breiby, DW ;
Nielsen, MM ;
Sölling, TI ;
Giles, M ;
McCulloch, I ;
Sirringhaus, H .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4772-4776
[5]  
CHANG PC, 2006, IEEE T ELECT DEVICES, V53
[6]   Electronic sensing of vapors with organic transistors [J].
Crone, B ;
Dodabalapur, A ;
Gelperin, A ;
Torsi, L ;
Katz, HE ;
Lovinger, AJ ;
Bao, Z .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2229-2231
[7]   Low-cost all-polymer integrated circuits [J].
Drury, CJ ;
Mutsaers, CMJ ;
Hart, CM ;
Matters, M ;
de Leeuw, DM .
APPLIED PHYSICS LETTERS, 1998, 73 (01) :108-110
[8]   Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene) [J].
Fou, AC ;
Onitsuka, O ;
Ferreira, M ;
Rubner, MF ;
Hsieh, BR .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (10) :7501-7509
[9]   High carrier mobility up to 0.1 cm2V-1s-1 at ambient temperatures in thiophene-based smectic liquid crystals [J].
Funahashi, M ;
Hanna, JI .
ADVANCED MATERIALS, 2005, 17 (05) :594-+
[10]   Flexible active-matrix displays and shift registers based on solution-processed organic transistors [J].
Gelinck, GH ;
Huitema, HEA ;
Van Veenendaal, E ;
Cantatore, E ;
Schrijnemakers, L ;
Van der Putten, JBPH ;
Geuns, TCT ;
Beenhakkers, M ;
Giesbers, JB ;
Huisman, BH ;
Meijer, EJ ;
Benito, EM ;
Touwslager, FJ ;
Marsman, AW ;
Van Rens, BJE ;
De Leeuw, DM .
NATURE MATERIALS, 2004, 3 (02) :106-110