Optimizing the Heck-Matsuda Reaction in Flow with a Constraint-Adapted Direct Search Algorithm

被引:66
作者
Cortes-Borda, Daniel [1 ,2 ]
Kutonova, Ksenia V. [3 ]
Jamet, Corentin [1 ]
Trusova, Marina E. [3 ]
Zammattio, Francoise [1 ]
Truchet, Charlotte [2 ]
Rodriguez-Zubiri, Mireia [1 ]
Felpin, Francois-Xavier [1 ,4 ]
机构
[1] Univ Nantes, UFR Sci & Tech, CNRS UMR 6241, LINA, 2 Rue Houssiniere, F-44322 Nantes 3, France
[2] Univ Nantes, UFR Sci & Tech, CNRS UMR 6230, CEISAM, 2 Rue Houssiniere, F-44322 Nantes 3, France
[3] Natl Res Tomsk Polytech Univ, Dept Biotechnol & Organ Chem, Tomsk 634050, Russia
[4] Inst Univ France, 1 Rue Descartes, F-75231 Paris 05, France
关键词
flow chemistry; palladium; Heck reaction; optimization algorithm; diazonium salts; ARYL DIAZONIUM SALTS; CHEMICAL-SYNTHESIS; SELF-OPTIMIZATION; MICROREACTOR SYSTEM; ARYLDIAZONIUM SALTS; MICROFLUIDIC SYSTEM; ORGANIC-SYNTHESIS; ACYCLIC OLEFINS; CHEMISTRY; DISCOVERY;
D O I
10.1021/acs.oprd.6b00310
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The optimization of a palladium-catalyzed Heck Matsuda reaction using an optimization algorithm is presented. We modified and implemented the Nelder-Mead method in order to perform constrained optimizations in a multidimensional space. We illustrated the power of our modified algorithm through the optimization of a multivariable reaction involving the arylation of a deactivated olefin with an arenediazonium salt. The great flexibility of our optimization method allows to fine-tune experimental conditions according to three different objective functions: maximum yield, highest throughput, and lowest production cost. The beneficial properties of flow reactors associated with the power of intelligent algorithms for the fine-tuning of experimental parameters allowed the reaction to proceed in astonishingly simple conditions unable to promote the coupling through traditional batch chemistry.
引用
收藏
页码:1979 / 1987
页数:9
相关论文
共 81 条
[1]   Enhancement of reaction rates by segmented fluid flow in capillary scale reactors [J].
Ahmed, Batoul ;
Barrow, David ;
Wirth, Thomas .
ADVANCED SYNTHESIS & CATALYSIS, 2006, 348 (09) :1043-1048
[2]   Heck reactions using segmented flow conditions [J].
Ahmed-Omer, Batoul ;
Barrow, David A. ;
Wirth, Thomas .
TETRAHEDRON LETTERS, 2009, 50 (26) :3352-3355
[3]   Automated Serendipity with Self-Optimizing Continuous-Flow Reactors [J].
Amara, Zacharias ;
Streng, Emilia S. ;
Skilton, Ryan A. ;
Jin, Jing ;
George, Michael W. ;
Poliakoff, Martyn .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2015, 2015 (28) :6141-6145
[4]   Continuous-Flow Meerwein Arylation [J].
Bhaya, Vinay G. ;
Joshi, Ramesh A. ;
Kulkarni, Amol A. .
JOURNAL OF FLOW CHEMISTRY, 2014, 4 (04) :211-216
[5]   Adaptive Process Optimization for Continuous Methylation of Alcohols in Supercritical Carbon Dioxide [J].
Bourne, Richard A. ;
Skilton, Ryan A. ;
Parrott, Andrew J. ;
Irvine, Derek J. ;
Poliakoff, Martyn .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2011, 15 (04) :932-938
[6]   Flow Chemistry: Intelligent Processing of Gas-Liquid Transformations Using a Tube-in-Tube Reactor [J].
Brzozowski, Martin ;
O'Brien, Matthew ;
Ley, Steven V. ;
Polyzos, Anastasios .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (02) :349-362
[7]   Continuous-Flow Synthesis of 1-Substituted Benzotriazoles from Chloronitrobenzenes and Amines in a CN Bond Formation/Hydrogenation/Diazotization/Cyclization Sequence [J].
Chen, Mao ;
Buchwald, Stephen L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (15) :4247-4250
[8]   Continuous-Flow Synthesis of Monoarylated Acetaldehydes Using Aryldiazonium Salts [J].
Chernyak, Natalia ;
Buchwald, Stephen L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (30) :12466-12469
[9]   Application of Metal-Based Reagents and Catalysts in Microstructured Flow Devices [J].
Chinnusamy, Tamilselvi ;
Yudha, Salprima S. ;
Hager, Markus ;
Kreitmeier, Peter ;
Reiser, Oliver .
CHEMSUSCHEM, 2012, 5 (02) :247-255
[10]   Online monitoring and analysis for autonomous continuous flow self-optimizing reactor systems [J].
Fabry, D. C. ;
Sugiono, E. ;
Rueping, M. .
REACTION CHEMISTRY & ENGINEERING, 2016, 1 (02) :129-133