Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes

被引:58
作者
Berry, Hugues [1 ,2 ]
Chate, Hugues [3 ]
机构
[1] INRIA Rhone Alpes, EPI Beagle, F-69603 Villeurbanne, France
[2] Univ Lyon, LIRIS, UMR CNRS INSA 5205, F-69621 Villeurbanne, France
[3] CEA Saclay, Serv Phys Etat Condense, URA2464, F-91191 Gif Sur Yvette, France
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 02期
关键词
LATERAL DIFFUSION; CELL; SUBDIFFUSION; CYTOPLASM; MEMBRANE; DYNAMICS; DEPENDENCE; MOLECULES; TRANSPORT; PROTEINS;
D O I
10.1103/PhysRevE.89.022708
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent alpha < 1 (subdiffusion). While the detailed mechanisms causing such behaviors are not always elucidated, movement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e. g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent alpha that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Subdiffraction-Limit Study of Kaede Diffusion and Spatial Distribution in Live Escherichia coli [J].
Bakshi, Somenath ;
Bratton, Benjamin P. ;
Weisshaar, James C. .
BIOPHYSICAL JOURNAL, 2011, 101 (10) :2535-2544
[2]   STRANGE KINETICS of single molecules in living cells [J].
Barkai, Eli ;
Garini, Yuval ;
Metzler, Ralf .
PHYSICS TODAY, 2012, 65 (08) :29-35
[3]   The localization transition of the two-dimensional Lorentz model [J].
Bauer, T. ;
Hoefling, F. ;
Munk, T. ;
Frey, E. ;
Franosch, T. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 189 (01) :103-118
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]   Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells [J].
Bronstein, I. ;
Israel, Y. ;
Kepten, E. ;
Mai, S. ;
Shav-Tal, Y. ;
Barkai, E. ;
Garini, Y. .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)
[7]   Diffusion and directed motion in cellular transport [J].
Caspi, A ;
Granek, R ;
Elbaum, M .
PHYSICAL REVIEW E, 2002, 66 (01)
[8]   Probing microscopic origins of confined subdiffusion by first-passage observables [J].
Condamin, S. ;
Tejedor, V. ;
Voituriez, R. ;
Benichou, O. ;
Klafter, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (15) :5675-5680
[9]   First-passage times in complex scale-invariant media [J].
Condamin, S. ;
Benichou, O. ;
Tejedor, V. ;
Voituriez, R. ;
Klafter, J. .
NATURE, 2007, 450 (7166) :77-80
[10]   Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect [J].
Coquel, Anne-Sophie ;
Jacob, Jean-Pascal ;
Primet, Mael ;
Demarez, Alice ;
Dimiccoli, Mariella ;
Julou, Thomas ;
Moisan, Lionel ;
Lindner, Ariel B. ;
Berry, Hugues .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (04)