Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors

被引:76
作者
Yang, MH
Teo, KBK
Gangloff, L
Milne, WI
Hasko, DG
Robert, Y
Legagneux, P
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Microelect Res Ctr, Cambridge CB3 0HE, England
[3] Thales R&T France, F-91404 Orsay, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2186100
中图分类号
O59 [应用物理学];
学科分类号
摘要
The subthreshold slope, transconductance, threshold voltage, and hysteresis of a carbon nanotube field-effect transistor (CNT FET) were examined as its configuration was changed from bottom-gate exposed channel, bottom-gate covered channel to top-gate FET. An individual single wall CNT was grown by chemical vapor deposition and its gate configuration was changed while determining its transistor characteristics to ensure that the measurements were not a function of different chirality or diameter CNTs. The bottom-gate exposed CNT FET utilized 900 nm SiO2 as the gate insulator. This CNT FET was then covered with TiO2 to form the bottom-gate covered channel CNT FET. Finally, the top-gate CNT FET was fabricated and the device utilized TiO2 (kappa similar to 80, equivalent oxide thickness=0.25 nm) as the gate insulator. Of the three configurations investigated, the top-gate device exhibited best subthreshold slope (67-70 mV/dec), highest transconductance (1.3 mu S), and negligible hysteresis in terms of threshold voltage shift. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 17 条
[1]   Carbon nanotube memory devices of high charge storage stability [J].
Cui, JB ;
Sordan, R ;
Burghard, M ;
Kern, K .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3260-3262
[2]   High-mobility nanotube transistor memory [J].
Fuhrer, MS ;
Kim, BM ;
Durkop, T ;
Brintlinger, T .
NANO LETTERS, 2002, 2 (07) :755-759
[3]   Carbon nanotubes as Schottky barrier transistors [J].
Heinze, S ;
Tersoff, J ;
Martel, R ;
Derycke, V ;
Appenzeller, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (10)
[4]   Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors [J].
Heinze, S ;
Radosavljevic, M ;
Tersoff, J ;
Avouris, P .
PHYSICAL REVIEW B, 2003, 68 (23)
[5]   Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics [J].
Javey, A ;
Guo, J ;
Farmer, DB ;
Wang, Q ;
Wang, DW ;
Gordon, RG ;
Lundstrom, M ;
Dai, HJ .
NANO LETTERS, 2004, 4 (03) :447-450
[6]   High-κ dielectrics for advanced carbon-nanotube transistors and logic gates [J].
Javey, A ;
Kim, H ;
Brink, M ;
Wang, Q ;
Ural, A ;
Guo, J ;
McIntyre, P ;
McEuen, P ;
Lundstrom, M ;
Dai, HJ .
NATURE MATERIALS, 2002, 1 (04) :241-246
[7]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657
[8]   High-performance carbon nanotube transistors on SrTiO3/Si substrates [J].
Kim, BM ;
Brintlinger, T ;
Cobas, E ;
Fuhrer, MS ;
Zheng, HM ;
Yu, Z ;
Droopad, R ;
Ramdani, J ;
Eisenbeiser, K .
APPLIED PHYSICS LETTERS, 2004, 84 (11) :1946-1948
[9]   Hysteresis caused by water molecules in carbon nanotube field-effect transistors [J].
Kim, W ;
Javey, A ;
Vermesh, O ;
Wang, O ;
Li, YM ;
Dai, HJ .
NANO LETTERS, 2003, 3 (02) :193-198
[10]   Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation [J].
Lacerda, RG ;
Teh, AS ;
Yang, MH ;
Teo, KBK ;
Rupesinghe, NL ;
Dalal, SH ;
Koziol, KKK ;
Roy, D ;
Amaratunga, GAJ ;
Milne, WI ;
Chhowalla, M ;
Hasko, DG ;
Wyczisk, F ;
Legagneux, P .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :269-271