Determination of the electronic structure of bilayer graphene from infrared spectroscopy

被引:262
作者
Zhang, L. M. [1 ]
Li, Z. Q. [1 ]
Basov, D. N. [1 ]
Fogler, M. M. [1 ]
Hao, Z. [2 ]
Martin, M. C. [2 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 23期
基金
美国国家科学基金会;
关键词
carbon; electronic structure; infrared spectra; nanostructured materials; reflection; tunnelling;
D O I
10.1103/PhysRevB.78.235408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an experimental study of the infrared conductivity, transmission, and reflection of a gated bilayer graphene and their theoretical analysis within the Slonczewski-Weiss-McClure (SWMc) model. The infrared response is shown to be governed by the interplay of the interband and the intraband transitions among the four bands of the bilayer. The position of the main conductivity peak at the charge-neutrality point is determined by the interlayer tunneling frequency. The shift of this peak as a function of the gate voltage gives information about less known parameters of the SWMc model such as those responsible for the electron-hole and sublattice asymmetries. These parameter values are shown to be consistent with recent electronic structure calculations for the bilayer graphene and the SWMc parameters commonly used for the bulk graphite.
引用
收藏
页数:11
相关论文
共 54 条
[41]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[42]   Controlling the electronic structure of bilayer graphene [J].
Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States ;
不详 ;
不详 .
Science, 2006, 5789 (951-954) :951-954
[43]   Gate-induced insulating state in bilayer graphene devices [J].
Oostinga, Jeroen B. ;
Heersche, Hubert B. ;
Liu, Xinglan ;
Morpurgo, Alberto F. ;
Vandersypen, Lieven M. K. .
NATURE MATERIALS, 2008, 7 (02) :151-157
[44]   Dirac fermions at the H point of graphite:: Magnetotransmission studies [J].
Orlita, M. ;
Faugeras, C. ;
Martinez, G. ;
Maude, D. K. ;
Sadowski, M. L. ;
Potemski, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[45]   Interlayer interactions in graphite and carbon nanotubes [J].
Palser, AHR .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (18) :4459-4464
[46]   From graphene to graphite:: Electronic structure around the K point [J].
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2006, 74 (07)
[47]   BAND STRUCTURE OF GRAPHITE [J].
SLONCZEWSKI, JC ;
WEISS, PR .
PHYSICAL REVIEW, 1958, 109 (02) :272-279
[48]   Conductivity of suspended and non-suspended graphene at finite gate voltage [J].
Stauber, T. ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW B, 2008, 78 (08)
[49]   ELECTRONIC-PROPERTIES OF GRAPHITE - A UNIFIED THEORETICAL-STUDY [J].
TATAR, RC ;
RABII, S .
PHYSICAL REVIEW B, 1982, 25 (06) :4126-4141
[50]   MINORITY-CARRIERS IN GRAPHITE AND H-POINT MAGNETOREFLECTION SPECTRA [J].
TOY, WW ;
DRESSELHAUS, MS ;
DRESSELHAUS, G .
PHYSICAL REVIEW B, 1977, 15 (08) :4077-4090