The breakdown of synchronization in systems of nonidentical chaotic oscillators: Theory and experiment

被引:10
作者
Chubb, J
Barreto, E
So, P
Gluckman, BJ
机构
[1] George Mason Univ, Dept Math, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[3] Krasnow Inst Adv Study, Fairfax, VA 22030 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2001年 / 11卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1142/S0218127401003760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The synchronization of chaotic systems has received a great deal of attention. However, most of the literature has focused on systems that possess invariant manifolds that persist as the coupling is varied. In this paper, we describe the process whereby synchronization is lost in systems of nonidentical coupled chaotic oscillators without special symmetries. We qualitatively and quantitatively analyze such systems in terms of the evolution of the unstable periodic orbit structure. Our results are illustrated with data from physical experiments.
引用
收藏
页码:2705 / 2713
页数:9
相关论文
共 23 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[4]   Non-bifurcational mechanism of loss of chaos synchronization in coupled non-identical systems [J].
Astakhov, V ;
Kapitaniak, T ;
Shabunin, A ;
Anishchenko, V .
PHYSICS LETTERS A, 1999, 258 (2-3) :99-102
[5]   Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits [J].
Astakhov, V ;
Shabunin, A ;
Kapitaniak, T ;
Anishchenko, V .
PHYSICAL REVIEW LETTERS, 1997, 79 (06) :1014-1017
[6]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[7]   From generalized synchrony to topological decoherence: Emergent sets in coupled chaotic systems [J].
Barreto, E ;
So, P ;
Gluckman, BJ ;
Schiff, SJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (08) :1689-1692
[8]  
CHUBB J, 2001, UNPUB
[9]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[10]   FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
RUELLE, D .
PHYSICA D, 1992, 56 (2-3) :185-187