Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2

被引:1254
作者
Tongay, Sefaattin [1 ]
Zhou, Jian [1 ]
Ataca, Can [2 ]
Lo, Kelvin [1 ]
Matthews, Tyler S. [1 ]
Li, Jingbo [3 ]
Grossman, Jeffrey C. [2 ]
Wu, Junqiao [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
2D-Semiconductors; MoSe2; MoS2; photoluminescence; bandgap; temperature dependence; PHOTOLUMINESCENCE;
D O I
10.1021/nl302584w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered semiconductors based on transition-metal chalcogenides usually cross from indirect bandgap in the bulk limit over to direct bandgap in the quantum (2D) limit. Such a crossover can be achieved by peeling off a multilayer sample to a single layer. For exploration of physical behavior and device applications, it is much desired to reversibly modulate such crossover in a multilayer sample. Here we demonstrate that, in a few-layer sample where the indirect bandgap and direct bandgap are nearly degenerate, the temperature rise can effectively drive the system toward the 2D limit by thermally decoupling neighboring layers via interlayer thermal expansion. Such a situation is realized in few-layer MoSe2, which shows stark contrast from the well-explored MoS2 where the indirect and direct bandgaps are far from degenerate. Photoluminescence of few-layer MoSe2 is much enhanced with the temperature rise, much like the way that the photoluminescence is enhanced due to the bandgap crossover going from the bulk to the quantum limit, offering potential applications involving external modulation of optical properties in 2D semiconductors. The direct bandgap of MoSe2, identified at 1.55 eV, may also promise applications in energy conversion involving solar spectrum, as it is close to the optimal bandgap value of single-junction solar cells and photoelechemical devices.
引用
收藏
页码:5576 / 5580
页数:5
相关论文
共 33 条
[1]   PHON: A program to calculate phonons using the small displacement method [J].
Alfe, Dario .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2622-2633
[2]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[3]   Visibility of dichalcogenide nanolayers [J].
Benameur, M. M. ;
Radisavljevic, B. ;
Heron, J. S. ;
Sahoo, S. ;
Berger, H. ;
Kis, A. .
NANOTECHNOLOGY, 2011, 22 (12)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Symmetry-dependent phonon renormalization in monolayer MoS2 transistor [J].
Chakraborty, Biswanath ;
Bera, Achintya ;
Muthu, D. V. S. ;
Bhowmick, Somnath ;
Waghmare, U. V. ;
Sood, A. K. .
PHYSICAL REVIEW B, 2012, 85 (16)
[7]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[8]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[9]   Low-temperature photocarrier dynamics in monolayer MoS2 [J].
Korn, T. ;
Heydrich, S. ;
Hirmer, M. ;
Schmutzler, J. ;
Schueller, C. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[10]  
LAVIK MT, 1968, ASLE TRANS, V11, P44