Visual Pattern Extraction Using Energy-Efficient "2-PCM Synapse" Neuromorphic Architecture

被引:167
作者
Bichler, Olivier [1 ]
Suri, Manan [2 ]
Querlioz, Damien [3 ]
Vuillaume, Dominique [4 ]
DeSalvo, Barbara [2 ]
Gamrat, Christian [1 ]
机构
[1] CEA LIST, Embedded Comp Lab, F-91191 Gif Sur Yvette, France
[2] CEA LETI, MINATEC, F-38054 Grenoble 9, France
[3] Univ Paris 11, Inst Elect Fondamentale, CNRS, F-91405 Orsay, France
[4] CNRS, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
关键词
Neuromorphic system; phase-change materials; spike-timing-dependent plasticity; spiking neural network; 2-PCM synapse; TIMING-DEPENDENT-PLASTICITY; PHASE-CHANGE MEMORY;
D O I
10.1109/TED.2012.2197951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a novel energy-efficient methodology "2-PCM Synapse" to use phase-change memory (PCM) as synapses in large-scale neuromorphic systems. Our spiking neural network architecture exploits the gradual crystallization behavior of PCM devices for emulating both synaptic potentiation and synaptic depression. Unlike earlier attempts to implement a biological-like spike-timing-dependent plasticity learning rule with PCM, we use a simplified rule where long-term potentiation and long-term depression can both be produced with a single invariant crystallizing pulse. Our architecture is simulated on a special purpose event-based simulator, using a behavioral model for the PCM devices validated with electrical characterization. The system, comprising about 2 million synapses, directly learns from event-based dynamic vision sensors. When tested with real-life data, it is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway. Complete trajectories can be learned with a detection rate above 90%. The synaptic programming power consumption of the system during learning is estimated and could be as low as 100 nW for scaled down PCM technology. Robustness to device variability is also evidenced.
引用
收藏
页码:2206 / 2214
页数:9
相关论文
共 36 条
[1]   A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Bichler, Olivier ;
Gamrat, Christian ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) :609-616
[2]  
[Anonymous], 2010, The 2010 International Joint Conference on Neural Networks, DOI 10.1109/IJCNN.2010.5596372
[3]  
[Anonymous], 2011, PROC IEEE SYMP VLSI
[4]  
[Anonymous], P IEEE IEDM
[5]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[6]  
Bichler O., 2012, NEURAL NETW IN PRESS
[7]  
Bichler O, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P859, DOI 10.1109/IJCNN.2011.6033311
[8]   Novel lithography-independent pore phase change memory [J].
Breitwisch, M. ;
Nirschl, T. ;
Chen, C. F. ;
Zhu, Y. ;
Lee, M. H. ;
Lamorey, M. ;
Burr, G. W. ;
Joseph, E. ;
Schrott, A. ;
Philipp, J. B. ;
Cheek, R. ;
Happ, T. D. ;
Chen, S. H. ;
Zaidi, S. ;
Flaitz, P. ;
Bruley, J. ;
Dasaka, R. ;
Rajendran, B. ;
Rossnagel, S. ;
Yang, M. ;
Chen, Y. C. ;
Bergmann, R. ;
Lung, H. L. ;
Lam, C. .
2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, :100-+
[9]  
Breitwisch M. J., 2010, US Patent, Patent No. 20100299297
[10]   A novel cross-spacer phase change memory with ultra-small lithography independent contact area [J].
Chen, W. S. ;
Lee, C. M. ;
Chao, D. S. ;
Chen, Y. C. ;
Chen, F. ;
Chen, C. W. ;
Yen, P. H. ;
Chen, M. J. ;
Wang, W. H. ;
Hsiao, T. C. ;
Yeh, J. T. ;
Chiou, S. H. ;
Liu, M. Y. ;
Wang, T. C. ;
Chein, L. L. ;
Huang, C. M. ;
Shih, N. T. ;
Tu, L. S. ;
Huang, D. ;
Yu, T. H. ;
Kao, M. J. ;
Tsai, M. J. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :319-+