Visual Pattern Extraction Using Energy-Efficient "2-PCM Synapse" Neuromorphic Architecture

被引:167
作者
Bichler, Olivier [1 ]
Suri, Manan [2 ]
Querlioz, Damien [3 ]
Vuillaume, Dominique [4 ]
DeSalvo, Barbara [2 ]
Gamrat, Christian [1 ]
机构
[1] CEA LIST, Embedded Comp Lab, F-91191 Gif Sur Yvette, France
[2] CEA LETI, MINATEC, F-38054 Grenoble 9, France
[3] Univ Paris 11, Inst Elect Fondamentale, CNRS, F-91405 Orsay, France
[4] CNRS, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
关键词
Neuromorphic system; phase-change materials; spike-timing-dependent plasticity; spiking neural network; 2-PCM synapse; TIMING-DEPENDENT-PLASTICITY; PHASE-CHANGE MEMORY;
D O I
10.1109/TED.2012.2197951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a novel energy-efficient methodology "2-PCM Synapse" to use phase-change memory (PCM) as synapses in large-scale neuromorphic systems. Our spiking neural network architecture exploits the gradual crystallization behavior of PCM devices for emulating both synaptic potentiation and synaptic depression. Unlike earlier attempts to implement a biological-like spike-timing-dependent plasticity learning rule with PCM, we use a simplified rule where long-term potentiation and long-term depression can both be produced with a single invariant crystallizing pulse. Our architecture is simulated on a special purpose event-based simulator, using a behavioral model for the PCM devices validated with electrical characterization. The system, comprising about 2 million synapses, directly learns from event-based dynamic vision sensors. When tested with real-life data, it is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway. Complete trajectories can be learned with a detection rate above 90%. The synaptic programming power consumption of the system during learning is estimated and could be as low as 100 nW for scaled down PCM technology. Robustness to device variability is also evidenced.
引用
收藏
页码:2206 / 2214
页数:9
相关论文
共 36 条
[11]   Spike timing-dependent plasticity of neural circuits [J].
Dan, Y ;
Poo, MM .
NEURON, 2004, 44 (01) :23-30
[12]   N-doped GeTe as Performance Booster for Embedded Phase-Change Memories [J].
Fantini, A. ;
Sousa, V. ;
Perniola, L. ;
Gourvest, E. ;
Bastien, J. C. ;
Maitrejean, S. ;
Braga, S. ;
Pashkov, N. ;
Bastard, A. ;
Hyot, B. ;
Roule, A. ;
Persico, A. ;
Feldis, H. ;
Jahan, C. ;
Nodin, J. F. ;
Blachier, D. ;
Toffoli, A. ;
Reimbold, G. ;
Fillot, F. ;
Pierre, F. ;
Annunziata, R. ;
Benshael, D. ;
Mazoyer, P. ;
Vallee, C. ;
Billon, T. ;
Hazart, J. ;
De Salvo, B. ;
Boulanger, F. .
2010 INTERNATIONAL ELECTRON DEVICES MEETING - TECHNICAL DIGEST, 2010,
[13]  
Ha Y. H., 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), P175, DOI 10.1109/VLSIT.2003.1221142
[14]  
Im D. H., 2008, IEDM, P1
[15]  
Jackson B. L., 2011, U.S. Patent, Patent No. [20 110 153 533, 20110153533]
[16]   Nanoscale Memristor Device as Synapse in Neuromorphic Systems [J].
Jo, Sung Hyun ;
Chang, Ting ;
Ebong, Idongesit ;
Bhadviya, Bhavitavya B. ;
Mazumder, Pinaki ;
Lu, Wei .
NANO LETTERS, 2010, 10 (04) :1297-1301
[17]  
Joubert A., 2011, 2011 IEEE 9th International New Circuits and Systems Conference (NEWCAS 2011), P9, DOI 10.1109/NEWCAS.2011.5981206
[18]   High Performance PRAM Cell Scalable to sub-20nm technology with below 4F2 Cell Size, Extendable to DRAM Applications [J].
Kim, I. S. ;
Cho, S. L. ;
Im, D. H. ;
Cho, E. H. ;
Kim, D. H. ;
Oh, G. H. ;
Ahn, D. H. ;
Park, S. O. ;
Nam, S. W. ;
Moon, J. T. ;
Chung, C. H. .
2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, :203-204
[19]   Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing [J].
Kuzum, Duygu ;
Jeyasingh, Rakesh G. D. ;
Lee, Byoungil ;
Wong, H. -S. Philip .
NANO LETTERS, 2012, 12 (05) :2179-2186
[20]   Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation [J].
Lee, J. I. ;
Park, H. ;
Cho, S. L. ;
Park, Y. L. ;
Bae, B. J. ;
Park, J. H. ;
Park, J. S. ;
An, H. G. ;
Bae, J. S. ;
Ahn, D. H. ;
Kim, Y. T. ;
Horii, H. ;
Song, S. A. ;
Shin, J. C. ;
Park, S. O. ;
Kim, H. S. ;
Chung, U-In. ;
Moon, J. T. ;
Ryu, B. I. .
2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, :102-+