Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes

被引:95
作者
Hu, Shu [1 ,4 ]
Chi, Chun-Yung [2 ]
Fountaine, Katherine T. [1 ,4 ]
Yao, Maoqing [2 ]
Atwater, Harry A. [3 ,4 ]
Dapkus, P. Daniel [2 ]
Lewis, Nathan S. [1 ,4 ]
Zhou, Chongwu [2 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Noyes Lab 210, Pasadena, CA 91125 USA
[2] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA USA
[3] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA
[4] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
III-V NANOWIRES; N-TYPE GAAS; ZINC BLENDE; GROWTH; SI; SEMICONDUCTORS; ABSORPTION; ACETONITRILE; SYSTEMS; SINGLE;
D O I
10.1039/c3ee40243f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Periodic arrays of n-GaAs nanowires have been grown by selective-area metal-organic chemical-vapor deposition on Si and GaAs substrates. The optical absorption characteristics of the nanowire-arrays were investigated experimentally and theoretically, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one-electron, reversible, redox species in non-aqueous solvents. The radial semiconductor/liquid junction in the nanowires produced near-unity external carrier-collection efficiencies for nanowire-array photoanodes in contact with nonaqueous electrolytes. These anodes exhibited overall inherent photoelectrode energy-conversion efficiencies of similar to 8.1% under 100 mW cm(-2) simulated Air Mass 1.5 illumination, with open-circuit photovoltages of 590 +/- 15 mV and short-circuit current densities of 24.6 +/- 2.0 mA cm(-2). The high optical absorption, and minimal reflection, at both normal and off-normal incidence of the GaAs nanowire arrays that occupy <5% of the fractional area of the electrode can be attributed to efficient incoupling into radial nanowire guided and leaky waveguide modes.
引用
收藏
页码:1879 / 1890
页数:12
相关论文
共 49 条
[31]   GAAS ON SI AND RELATED SYSTEMS - PROBLEMS AND PROSPECTS [J].
KROEMER, H ;
LIU, TY ;
PETROFF, PM .
JOURNAL OF CRYSTAL GROWTH, 1989, 95 (1-4) :96-102
[32]   Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells [J].
Kupec, J. ;
Witzigmann, B. .
OPTICS EXPRESS, 2009, 17 (12) :10399-10410
[33]   Light absorption and emission in nanowire array solar cells [J].
Kupec, Jan ;
Stoop, Ralph L. ;
Witzigmann, Bernd .
OPTICS EXPRESS, 2010, 18 (26) :27589-27605
[34]   MODELING OF 2-JUNCTION, SERIES-CONNECTED TANDEM SOLAR-CELLS USING TOP-CELL THICKNESS AS AN ADJUSTABLE-PARAMETER [J].
KURTZ, SR ;
FAINE, P ;
OLSON, JM .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (04) :1890-1895
[35]   Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications [J].
Lin, Chenxi ;
Povinelli, Michelle L. .
OPTICS EXPRESS, 2009, 17 (22) :19371-19381
[36]   Toward Optimized Light Utilization in Nanowire Arrays Using Scalable Nanosphere Lithography and Selected Area Growth [J].
Madaria, Anuj R. ;
Yao, Maoqing ;
Chi, ChunYung ;
Huang, Ningfeng ;
Lin, Chenxi ;
Li, Ruijuan ;
Povinelli, Michelle L. ;
Dapkus, P. Daniel ;
Zhou, Chongwu .
NANO LETTERS, 2012, 12 (06) :2839-2845
[37]   Patterned Radial GaAs Nanopillar Solar Cells [J].
Mariani, Giacomo ;
Wong, Ping-Show ;
Katzenmeyer, Aaron M. ;
Leonard, Francois ;
Shapiro, Joshua ;
Huffaker, Diana L. .
NANO LETTERS, 2011, 11 (06) :2490-2494
[38]   Epitaxial III-V nanowires on silicon [J].
Mårtensson, T ;
Svensson, CPT ;
Wacaser, BA ;
Larsson, MW ;
Seifert, W ;
Deppert, K ;
Gustafsson, A ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2004, 4 (10) :1987-1990
[39]   Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy [J].
Noborisaka, J ;
Motohisa, J ;
Fukui, T .
APPLIED PHYSICS LETTERS, 2005, 86 (21) :1-3
[40]   Theoretical and experimental upper bounds on interfacial charge-transfer rate constants between semiconducting solids and outer-sphere redox couples [J].
Pomykal, KE ;
Fajardo, AM ;
Lewis, NS .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (09) :3652-3664