Engineering a Robust Quantum Spin Hall State in Graphene via Adatom Deposition

被引:414
作者
Weeks, Conan [1 ]
Hu, Jun [2 ]
Alicea, Jason [2 ]
Franz, Marcel [1 ]
Wu, Ruqian [2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
PHYSICAL REVIEW X | 2011年 / 1卷 / 02期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; TRANSPORT;
D O I
10.1103/PhysRevX.1.021001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The 2007 discovery of quantized conductance in HgTe quantum wells delivered the field of topological insulators (TIs) its first experimental confirmation. While many three-dimensional TIs have since been identified, HgTe remains the only known two-dimensional system in this class. Difficulty fabricating HgTe quantum wells has, moreover, hampered their widespread use. With the goal of breaking this logjam, we provide a blueprint for stabilizing a robust TI state in a more readily available two-dimensional material-graphene. Using symmetry arguments, density functional theory, and tight-binding simulations, we predict that graphene endowed with certain heavy adatoms realizes a TI with substantial band gap. For indium and thallium, our most promising adatom candidates, a modest 6% coverage produces an estimated gap near 80 K and 240 K, respectively, which should be detectable in transport or spectroscopic measurements. Engineering such a robust topological phase in graphene could pave the way for a new generation of devices for spintronics, ultra-low-dissipation electronics, and quantum information processing.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 52 条
[1]   Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles [J].
Abdelouahed, Samir ;
Ernst, A. ;
Henk, J. ;
Maznichenko, I. V. ;
Mertig, I. .
PHYSICAL REVIEW B, 2010, 82 (12)
[2]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   First-principles calculation of the spin-orbit splitting in graphene [J].
Boettger, J. C. ;
Trickey, S. B. .
PHYSICAL REVIEW B, 2007, 75 (12)
[5]   ABSENCE OF BACKSCATTERING IN THE QUANTUM HALL-EFFECT IN MULTIPROBE CONDUCTORS [J].
BUTTIKER, M .
PHYSICAL REVIEW B, 1988, 38 (14) :9375-9389
[6]   Impurity-Induced Spin-Orbit Coupling in Graphene [J].
Castro Neto, A. H. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2009, 103 (02)
[7]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[8]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Josephson current and multiple Andreev reflections in graphene SNS junctions [J].
Du, Xu ;
Skachko, Ivan ;
Andrei, Eva Y. .
PHYSICAL REVIEW B, 2008, 77 (18)