DNA rendering of polyhedral meshes at the nanoscale

被引:528
作者
Benson, Erik [1 ,2 ]
Mohammed, Abdulmelik [3 ]
Gardell, Johan [1 ,2 ]
Masich, Sergej [4 ]
Czeizler, Eugen [3 ]
Orponen, Pekka [3 ]
Hogberg, Bjorn [1 ,2 ]
机构
[1] Karolinska Inst, Dept Med Biochem & Biophys, SE-17177 Stockholm, Sweden
[2] Karolinska Inst, Dept Neurosci, SE-17177 Stockholm, Sweden
[3] Aalto Univ, Dept Comp Sci, FI-00076 Aalto, Finland
[4] Karolinska Inst, Dept Cell & Mol Biol, SE-17177 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
SINGLE-STRANDED-DNA; FOLDING DNA; ORIGAMI; SHAPES; NANOSTRUCTURES; JUNCTIONS;
D O I
10.1038/nature14586
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It was suggested(1) more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique(2), DNA nanotechnology has enabled increasingly more complex structures(3-18). But although general approaches for creating DNA origami polygonal meshes and design software are available(14,16,17,19-21), there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.
引用
收藏
页码:441 / U139
页数:9
相关论文
共 30 条
[1]  
Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/NNANO.2014.58, 10.1038/nnano.2014.58]
[2]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[3]   Icosahedral DNA Nanocapsules by Modular Assembly [J].
Bhatia, Dhiraj ;
Mehtab, Shabana ;
Krishnan, Ramya ;
Indi, Shantinath S. ;
Basu, Atanu ;
Krishnan, Yamuna .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (23) :4134-4137
[4]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633
[5]   Folding DNA into Twisted and Curved Nanoscale Shapes [J].
Dietz, Hendrik ;
Douglas, Shawn M. ;
Shih, William M. .
SCIENCE, 2009, 325 (5941) :725-730
[6]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834
[7]   Rapid prototyping of 3D DNA-origami shapes with caDNAno [J].
Douglas, Shawn M. ;
Marblestone, Adam H. ;
Teerapittayanon, Surat ;
Vazquez, Alejandro ;
Church, George M. ;
Shih, William M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5001-5006
[8]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[9]  
Dovling Andersen L., 1995, DISCRETE APPL MATH, V59, P203
[10]  
Ducani C, 2013, NAT METHODS, V10, P647, DOI [10.1038/nmeth.2503, 10.1038/NMETH.2503]