Reciprocity between moduli and phases in time-dependent wave functions

被引:18
作者
Englman, R [1 ]
Yahalom, A
机构
[1] Soreq NRC, Dept Appl Math & Phys, IL-81800 Yavne, Israel
[2] Coll Judea & Samaria, Res Inst, IL-44284 Arial, Israel
[3] Tel Aviv Univ, Fac Engn, Ramat Aviv, Israel
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 03期
关键词
D O I
10.1103/PhysRevA.60.1802
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For time (t)-dependent wave functions, we derive rigorous conjugate relations between analytic decompositions (in the complex t plane) of phases and log moduli. We then show that reciprocity, taking the form of Kramers-Kronig integral relations (but in the time domain), holds between observable phases and moduli in several physically important instances. These include the nearly adiabatic (slowly varying) case, a class of cyclic wave functions, wave packets, and noncyclic states in an "expanding potential". The results define a unique phase through its analyticity properties, and exhibit the interdependence of geometric phases and related decay probabilities. Several known quantum-mechanical applications possess the reciprocity property obtained in the paper. [S1050-2947(99)02708-0].
引用
收藏
页码:1802 / 1810
页数:9
相关论文
共 33 条
[1]   Quantum measurement backreaction and induced topological phases [J].
Aharonov, Y ;
Kaufherr, T ;
Popescu, S ;
Reznik, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2023-2026
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]   COMPUTER-SIMULATIONS OF EXCESS ELECTRON-TRANSPORT IN NEON [J].
ANCILOTTO, F ;
TOIGO, F .
PHYSICAL REVIEW A, 1992, 45 (06) :4015-4022
[4]  
BERRY MV, 1984, J PHYS A-MATH GEN, V17, P1805, DOI 10.1088/0305-4470/17/9/016
[5]   HISTORIES OF ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 429 (1876) :61-72
[6]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[7]  
BERRY MV, 1984, P R SOC LOND, V392, P1593
[8]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[9]   EXACT PROPAGATORS FOR TIME-DEPENDENT COULOMB, DELTA AND OTHER POTENTIALS [J].
DODONOV, VV ;
MANKO, VI ;
NIKONOV, DE .
PHYSICS LETTERS A, 1992, 162 (05) :359-364
[10]   Phase-modulus relations in cyclic wave functions [J].
Englman, R ;
Yahalom, A ;
Baer, M .
PHYSICS LETTERS A, 1999, 251 (04) :223-228