Identification of chaotic systems with hidden variables (modified Bock's algorithm)

被引:17
作者
Bezruchko, BP
Smirnov, DA
Sysoev, IV
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Elect Oscillat & Waves, Saratov 410026, Russia
[2] Russian Acad Sci, Inst Radioengn & Elect, Saratov Branch, Saratov 410019, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/j.chaos.2005.08.204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the problem of estimating parameters of chaotic dynamical systems from a time series in a situation when some of state variables are not observed and/or the data are very noisy. Using specially developed quantitative criteria, we compare performance of the original multiple shooting approach (Bock's algorithm) and its modified version. The latter is shown to be significantly superior for long chaotic time series. In particular, it allows to obtain accurate estimates for much worse starting guesses for the estimated parameters. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 90
页数:9
相关论文
共 27 条
[11]  
HORBELT W, 2001, THESIS U FREIBURG
[12]  
Ibragimov IA, 1981, STAT ESTIMATION ASYM
[13]   Unbiased reconstruction of the dynamics underlying a noisy chaotic time series [J].
Jaeger, L ;
Kantz, H .
CHAOS, 1996, 6 (03) :440-450
[14]   Chaotic-time-series reconstruction by the Bayesian paradigm: Right results by wrong methods [J].
Judd, K .
PHYSICAL REVIEW E, 2003, 67 (02) :6
[15]  
Ljung L, 1991, SYSTEM IDENTIFICATIO, P432
[16]   Better nonlinear models from noisy data: Attractors with maximum likelihood [J].
McSharry, PE ;
Smith, LA .
PHYSICAL REVIEW LETTERS, 1999, 83 (21) :4285-4288
[17]   Bayesian reconstruction of chaotic dynamical systems [J].
Meyer, R ;
Christensen, N .
PHYSICAL REVIEW E, 2000, 62 (03) :3535-3542
[18]   Estimating model parameters from time series by autosynchronization [J].
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1232-1235
[19]   RECONSTRUCTING PHYSICAL VARIABLES AND PARAMETERS FROM DYNAMICAL-SYSTEMS [J].
PARLITZ, U ;
ZOLLER, R ;
HOLZFUSS, J ;
LAUTERBORN, W .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (06) :1715-1719
[20]   Statistical methods of parameter estimation for deterministically chaotic time series [J].
Pisarenko, VF ;
Sornette, D .
PHYSICAL REVIEW E, 2004, 69 (03) :036122-1