The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review

被引:482
作者
Aerts, Hugo J. W. L. [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol, Boston, MA USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiol, Boston, MA USA
基金
美国国家卫生研究院;
关键词
CELL LUNG-CANCER; COMPUTER-AIDED DETECTION; PHASE-III TRIAL; PROGNOSTIC-SIGNIFICANCE; SCREENING MAMMOGRAPHY; 1ST-LINE TAXANE/CARBOPLATIN; PULMONARY ADENOCARCINOMA; AUTOMATED DETECTION; VOLUME MEASUREMENT; TEXTURAL FEATURES;
D O I
10.1001/jamaoncol.2016.2631
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IMPORTANCE Advances in genomics have led to the recognition that tumors are populated by distinct genotypic subgroups that drive tumor development and progression. The spatial and temporal heterogeneity of solid tumors has been a critical barrier to the development of precision medicine approaches because the standard approach to tumor sampling, often invasive needle biopsy, is unable to fully capture the spatial state of the tumor. Image-based phenotyping, which represents quantification of the tumor phenotype through medical imaging, is a promising development for precision medicine. OBSERVATIONS Medical imaging can provide a comprehensive macroscopic picture of the tumor phenotype and its environment that is ideally suited to quantifying the development of the tumor phenotype before, during, and after treatment. As a noninvasive technique, medical imaging can be performed at low risk and inconvenience to the patient. The semantic features approach to tumor phenotyping, accomplished by visual assessment of radiologists, is compared with a computational radiomic approach that relies on automated processing of imaging assays. Together, these approaches capture important information for diagnostic, prognostic, and predictive purposes. CONCLUSIONS AND RELEVANCE Although imaging technology is already embedded in clinical practice for diagnosis, staging, treatment planning, and response assessment, the transition of these computational methods to the clinic has been surprisingly slow. This review outlines the promise of these novel technologies for precision medicine and the obstacles to clinical application.
引用
收藏
页码:1636 / 1642
页数:7
相关论文
共 76 条
[31]   18F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi-Cancer Site Patient Cohort [J].
Hatt, Mathieu ;
Majdoub, Mohamed ;
Vallieres, Martin ;
Tixier, Florent ;
Le Rest, Catherine Cheze ;
Groheux, David ;
Hindie, Elif ;
Martineau, Antoine ;
Pradier, Olivier ;
Hustinx, Roland ;
Perdrisot, Remy ;
Guillevin, Remy ;
El Naqa, Issam ;
Visvikis, Dimitris .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (01) :38-44
[32]   Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy [J].
Hirsch, Fred R. ;
Herbst, Roy S. ;
Olsen, Christine ;
Chansky, Kari ;
Crowley, John ;
Kelly, Karen ;
Franklin, Wilbur A. ;
Bunn, Paul A., Jr. ;
Varella-Garcia, Marileila ;
Gandara, David R. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (20) :3351-3357
[33]   Radiographic and pathological analysis of small lung adenocarcinoma using the new IASLC classification [J].
Honda, T. ;
Kondo, T. ;
Murakami, S. ;
Saito, H. ;
Oshita, F. ;
Ito, H. ;
Tsuboi, M. ;
Nakayama, H. ;
Yokose, T. ;
Kameda, Y. ;
Isobe, T. ;
Yamada, K. .
CLINICAL RADIOLOGY, 2013, 68 (01) :E21-E26
[34]   Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes [J].
Hong, Su Jin ;
Kim, Tae Jung ;
Choi, Yo Won ;
Park, Jeong-Soo ;
Chung, Jin-Haeng ;
Lee, Kyung Won .
EUROPEAN RADIOLOGY, 2016, 26 (10) :3660-3668
[35]   Correlation Between EGFR Mutation Status and Computed Tomography Features in Patients With Advanced Pulmonary Adenocarcinoma [J].
Hsu, Jui-Sheng ;
Huang, Ming-Shyan ;
Chen, Chiao-Yun ;
Liu, Gin-Chung ;
Liu, Ta-Chih ;
Chong, Inn-Wen ;
Chou, Shah-Hwa ;
Yang, Chih-Jen .
JOURNAL OF THORACIC IMAGING, 2014, 29 (06) :357-363
[36]   Measures of response: RECIST, WHO, and new alternatives [J].
Jaffe, C. Carl .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (20) :3245-3251
[37]   Analysis of Potential Predictive Markers of Cetuximab Benefit in BMS099, a Phase III Study of Cetuximab and First-Line Taxane/Carboplatin in Advanced Non-Small-Cell Lung Cancer [J].
Khambata-Ford, Shirin ;
Harbison, Christopher T. ;
Hart, Lowell L. ;
Awad, Melissa ;
Xu, Li-An ;
Horak, Christine E. ;
Dakhil, Shaker ;
Hermann, Robert C. ;
Lynch, Thomas J. ;
Weber, Martin R. .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (06) :918-927
[38]   Radiomics: the process and the challenges [J].
Kumar, Virendra ;
Gu, Yuhua ;
Basu, Satrajit ;
Berglund, Anders ;
Eschrich, Steven A. ;
Schabath, Matthew B. ;
Forster, Kenneth ;
Aerts, Hugo J. W. L. ;
Dekker, Andre ;
Fenstermacher, David ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Lambin, Philippe ;
Balagurunathan, Yoganand ;
Gatenby, Robert A. ;
Gillies, Robert J. .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1234-1248
[39]   Promise and pitfalls of quantitative imaging in oncology clinical trials [J].
Kurland, Brenda F. ;
Gerstner, Elizabeth R. ;
Mountz, James M. ;
Schwartz, Lawrence H. ;
Ryan, Christopher W. ;
Graham, Michael M. ;
Buatti, John M. ;
Fennessy, Fiona M. ;
Eikman, Edward A. ;
Kumar, Virendra ;
Forster, Kenneth M. ;
Wahl, Richard L. ;
Lieberman, Frank S. .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1301-1312
[40]   Radiomics: Extracting more information from medical images using advanced feature analysis [J].
Lambin, Philippe ;
Rios-Velazquez, Emmanuel ;
Leijenaar, Ralph ;
Carvalho, Sara ;
van Stiphout, Ruud G. P. M. ;
Granton, Patrick ;
Zegers, Catharina M. L. ;
Gillies, Robert ;
Boellard, Ronald ;
Dekker, Andre ;
Aerts, Hugo J. W. L. .
EUROPEAN JOURNAL OF CANCER, 2012, 48 (04) :441-446