In situ observation of stress relaxation in epitaxial graphene

被引:104
作者
N'Diaye, Alpha T. [1 ]
van Gastel, Raoul [2 ]
Martinez-Galera, Antonio J. [3 ]
Coraux, Johann [1 ,5 ]
Hattab, Hichem [4 ]
Wall, Dirk [4 ]
zu Heringdorf, Frank-J Meyer [4 ]
Horn-von Hoegen, Michael [4 ]
Gomez-Rodriguez, Jose M. [3 ]
Poelsema, Bene [2 ]
Busse, Carsten [1 ]
Michely, Thomas [1 ]
机构
[1] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany
[2] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[3] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[4] Univ Duisburg Essen, Inst Expt Phys, D-47057 Duisburg, Germany
[5] UJF, CNRS, Inst Neel, F-38042 Grenoble 9, France
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
CHEMICAL-VAPOR-DEPOSITION; LARGE-AREA; GRAPHITE; FILMS; PT(111); LAYERS;
D O I
10.1088/1367-2630/11/11/113056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Upon cooling, branched line defects develop in epitaxial graphene grown at high temperature on Pt(111) and Ir(111). Using atomically resolved scanning tunneling microscopy, we demonstrate that these defects are wrinkles in the graphene layer, i.e. stripes of partially delaminated graphene. With low energy electron microscopy (LEEM), we investigate the wrinkling phenomenon in situ. Upon temperature cycling, we observe hysteresis in the appearance and disappearance of the wrinkles. Simultaneously with wrinkle formation a change in bright field imaging intensity of adjacent areas and a shift in the moire spot positions for micro diffraction of such areas takes place. The stress relieved by wrinkle formation results from the mismatch in thermal expansion coefficients of graphene and the substrate. A simple one-dimensional model taking into account the energies related to strain, delamination and bending of graphene is in qualitative agreement with our observations.
引用
收藏
页数:14
相关论文
共 40 条
[31]   Graphene-Based Ultracapacitors [J].
Stoller, Meryl D. ;
Park, Sungjin ;
Zhu, Yanwu ;
An, Jinho ;
Ruoff, Rodney S. .
NANO LETTERS, 2008, 8 (10) :3498-3502
[32]   Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001) [J].
Sun, G. F. ;
Jia, J. F. ;
Xue, Q. K. ;
Li, L. .
NANOTECHNOLOGY, 2009, 20 (35)
[33]   Epitaxial graphene on ruthenium [J].
Sutter, Peter W. ;
Flege, Jan-Ingo ;
Sutter, Eli A. .
NATURE MATERIALS, 2008, 7 (05) :406-411
[34]   Thermodynamics and Kinetics of Graphene Growth on SiC(0001) [J].
Tromp, R. M. ;
Hannon, J. B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)
[35]   Selecting a single orientation for millimeter sized graphene sheets [J].
van Gastel, R. ;
N'Diaye, A. T. ;
Wall, D. ;
Coraux, J. ;
Busse, C. ;
Buckanie, N. M. ;
zu Heringdorf, F-J. Meyer ;
von Hoegen, M. Horn ;
Michely, T. ;
Poelsema, B. .
APPLIED PHYSICS LETTERS, 2009, 95 (12)
[36]   THE BAND THEORY OF GRAPHITE [J].
WALLACE, PR .
PHYSICAL REVIEW, 1947, 71 (09) :622-634
[37]   HIGH-TEMPERATURE THERMAL-EXPANSION OF IRIDIUM (REVISED RESULTS) [J].
WIMBER, RT .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (11) :5115-5115
[38]   Nanocomposite Ni-TiN coatings prepared by ultrasonic electrodeposition [J].
Xia, Fa-feng ;
Wu, Meng-hua ;
Wang, Fan ;
Jia, Zhen-yuan ;
Wang, Ai-leng .
CURRENT APPLIED PHYSICS, 2009, 9 (01) :44-47
[39]   Graphene segregated on Ni surfaces and transferred to insulators [J].
Yu, Qingkai ;
Lian, Jie ;
Siriponglert, Sujitra ;
Li, Hao ;
Chen, Yong P. ;
Pei, Shin-Shem .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[40]   Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons [J].
Zacharia, R ;
Ulbricht, H ;
Hertel, T .
PHYSICAL REVIEW B, 2004, 69 (15) :155406-1