Adaptations to energy stress dictate the ecology and evolution of the Archaea

被引:556
作者
Valentine, David L. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nrmicro1619
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The three domains of life on Earth include the two prokaryotic groups, Archaea and Bacteria. The Archaea are distinguished from Bacteria based on phylogenetic and biochemical differences, but currently there is no unifying ecological principle to differentiate these groups. The ecology of the Archaea is reviewed here in terms of cellular bioenergetics. Adaptation to chronic energy stress is hypothesized to be the crucial factor that distinguishes the Archaea from Bacteria. The biochemical mechanisms that enable archaea to cope with chronic energy stress include low-permeability membranes and specific catabolic pathways. Based on the ecological unity and biochemical adaptations among archaea, I propose the hypothesis that chronic energy stress is the primary selective pressure governing the evolution of the Archaea.
引用
收藏
页码:316 / 323
页数:9
相关论文
共 86 条
[21]   WATER TRANSPORT ACROSS BIOLOGICAL-MEMBRANES [J].
HAINES, TH .
FEBS LETTERS, 1994, 346 (01) :115-122
[22]   Do sterols reduce proton and sodium leaks through lipid bilayers? [J].
Haines, TH .
PROGRESS IN LIPID RESEARCH, 2001, 40 (04) :299-324
[23]   Reverse methanogenesis: Testing the hypothesis with environmental genomics [J].
Hallam, SJ ;
Putnam, N ;
Preston, CM ;
Detter, JC ;
Rokhsar, D ;
Richardson, PM ;
DeLong, EF .
SCIENCE, 2004, 305 (5689) :1457-1462
[24]   Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota [J].
Hallam, SJ ;
Mincer, TJ ;
Schleper, C ;
Preston, CM ;
Roberts, K ;
Richardson, PM ;
DeLong, EF .
PLOS BIOLOGY, 2006, 4 (04) :520-536
[25]   Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum [J].
Hallam, Steven J. ;
Konstantinidis, Konstantinos T. ;
Putnam, Nik ;
Schleper, Christa ;
Watanabe, Yoh-ichi ;
Sugahara, Junichi ;
Preston, Christina ;
de la Torre, Jose ;
Richardson, Paul M. ;
DeLong, Edward F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (48) :18296-18301
[26]   Biological energy requirements as quantitative boundary conditions for life in the subsurface [J].
Hoehler, T. M. .
GEOBIOLOGY, 2004, 2 (04) :205-215
[27]   Acetogenesis from CO2 in an anoxic marine sediment [J].
Hoehler, TM ;
Albert, DB ;
Alperin, MJ ;
Martens, CS .
LIMNOLOGY AND OCEANOGRAPHY, 1999, 44 (03) :662-667
[28]   Thermodynamic control on hydrogen concentrations in anoxic sediments [J].
Hoehler, TM ;
Alperin, MJ ;
Albert, DB ;
Martens, CS .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1998, 62 (10) :1745-1756
[29]   Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment [J].
Hoehler, TM ;
Alperin, MJ ;
Albert, DB ;
Martens, CS .
FEMS MICROBIOLOGY ECOLOGY, 2001, 38 (01) :33-41
[30]   FIELD AND LABORATORY STUDIES OF METHANE OXIDATION IN AN ANOXIC MARINE SEDIMENT - EVIDENCE FOR A METHANOGEN-SULFATE REDUCER CONSORTIUM [J].
HOEHLER, TM ;
ALPERIN, MJ ;
ALBERT, DB ;
MARTENS, CS .
GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (04) :451-463