Fidelity analysis of topological quantum phase transitions

被引:87
作者
Abasto, Damian F. [1 ]
Hamma, Alioscia [2 ]
Zanardi, Paolo [1 ,3 ]
机构
[1] Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Inst Sci Interchange, I-10133 Turin, Italy
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevA.78.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply the fidelity metric approach to analyze two recently introduced models that exhibit a quantum phase transition to a topologically ordered phase. These quantum models have a known connection to classical statistical mechanical models; we exploit this mapping to obtain the scaling of the fidelity metric tensor near criticality. The topological phase transitions manifest themselves in divergences of the fidelity metric across the phase boundaries. These results provide evidence that the fidelity approach is a valuable tool to investigate novel phases lacking a clear characterization in terms of local order parameters.
引用
收藏
页数:4
相关论文
共 45 条
[11]   Quantum phase transitions and quantum fidelity in free fermion graphs [J].
Cozzini, Marco ;
Giorda, Paolo ;
Zanardi, Paolo .
PHYSICAL REVIEW B, 2007, 75 (01)
[12]   CRITICAL-BEHAVIOR OF THE 2D ISING-MODEL WITH IMPURITY BONDS [J].
DOTSENKO, VS ;
DOTSENKO, VS .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (03) :495-507
[13]  
Goldenfeld N., 2018, Lectures on phase transitions and the renormalization group
[14]   Fidelity susceptibility, scaling, and universality in quantum critical phenomena [J].
Gu, Shi-Jian ;
Kwok, Ho-Man ;
Ning, Wen-Qiang ;
Lin, Hai-Qing .
PHYSICAL REVIEW B, 2008, 77 (24)
[15]   Bipartite entanglement and entropic boundary law in lattice spin systems [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICAL REVIEW A, 2005, 71 (02)
[16]   Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order [J].
Hamma, A. ;
Zhang, W. ;
Haas, S. ;
Lidar, D. A. .
PHYSICAL REVIEW B, 2008, 77 (15)
[17]   Topological entanglement entropy [J].
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[18]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[20]   Detecting topological order in a ground state wave function [J].
Levin, M ;
Wen, XG .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)