Controllable valley splitting in silicon quantum devices

被引:216
作者
Goswami, Srijit
Slinker, K. A.
Friesen, Mark
McGuire, L. M.
Truitt, J. L.
Tahan, Charles
Klein, L. J.
Chu, J. O.
Mooney, P. M.
van der Weide, D. W.
Joynt, Robert
Coppersmith, S. N.
Eriksson, Mark A.
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[5] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys475
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Silicon has many attractive properties for quantum computing, and the quantum-dot architecture is appealing because of its controllability and scalability. However, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin-based quantum-dot qubits. Only when a large energy splits these valleys do we obtain well-defined and long-lived spin states appropriate for quantum computing. Here, we show that the small valley splittings observed in previous experiments on Si-SiGe heterostructures result from atomic steps at the quantum-well interface. Lateral confinement in a quantum point contact limits the electron wavefunctions to several steps, and enhances the valley splitting substantially, up to 1.5 meV. The combination of electrostatic and magnetic confinement produces a valley splitting larger than the spin splitting, which is controllable over a wide range. These results improve the outlook for realizing spin qubits with long coherence times in silicon-based devices.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 34 条
[1]   VALLEY SPLITTING IN THE SILICON INVERSION LAYER - MISORIENTATION EFFECTS [J].
ANDO, T .
PHYSICAL REVIEW B, 1979, 19 (06) :3089-3095
[2]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[3]   Valley splitting in strained silicon quantum wells [J].
Boykin, TB ;
Klimeck, G ;
Eriksson, MA ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
APPLIED PHYSICS LETTERS, 2004, 84 (01) :115-117
[4]   Recipes for spin-based quantum computing [J].
Cerletti, V ;
Coish, WA ;
Gywat, O ;
Loss, D .
NANOTECHNOLOGY, 2005, 16 (04) :R27-R49
[5]   Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy [J].
Ciorga, M ;
Sachrajda, AS ;
Hawrylak, P ;
Gould, C ;
Zawadzki, P ;
Jullian, S ;
Feng, Y ;
Wasilewski, Z .
PHYSICAL REVIEW B, 2000, 61 (24) :16315-16318
[6]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[7]   Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system [J].
Cronenwett, SM ;
Lynch, HJ ;
Goldhaber-Gordon, D ;
Kouwenhoven, LP ;
Marcus, CM ;
Hirose, K ;
Wingreen, NS ;
Umansky, V .
PHYSICAL REVIEW LETTERS, 2002, 88 (22) :226805/1-226805/4
[8]   ELECTRICAL DETECTION OF NUCLEAR MAGNETIC-RESONANCE IN GAAS-ALXGA1-XAS HETEROSTRUCTURES [J].
DOBERS, M ;
VONKLITZING, K ;
SCHNEIDER, J ;
WEIMANN, G ;
PLOOG, K .
PHYSICAL REVIEW LETTERS, 1988, 61 (14) :1650-1653
[9]  
Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
[10]   Magnetic field dependence of valley splitting in realistic Si/SiGe quantum wells [J].
Friesen, Mark ;
Eriksson, M. A. ;
Coppersmith, S. N. .
APPLIED PHYSICS LETTERS, 2006, 89 (20)