Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes

被引:41
作者
Dillon, AC [1 ]
Mahan, AH [1 ]
Parilla, PA [1 ]
Alleman, JL [1 ]
Heben, MJ [1 ]
Jones, KM [1 ]
Gilbert, KEH [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
D O I
10.1021/nl0342038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hot wire chemical vapor deposition (HWCVD) has been adapted to be a continuous growth process for high-density carbon multiwall nanotubes (MWNTs). MWNT growth is optimized in 1:5 CH4:Ar at 150 Torr with reactor temperatures of 400 and 550 degreesC for static and flowing gases, respectively. Ferrocene is employed to provide a gas-phase catalyst. Highly graphitic nanotubes can be continuously deposited with iron content as low as 15 wt % and carbon impurities below thermal gravimetric analysis detection limits. The MWNTs are simply purified to similar to99.5 wt % with minimal structural damage and with a 75 wt % yield.
引用
收藏
页码:1425 / 1429
页数:5
相关论文
共 39 条
  • [21] Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition
    Lee, CJ
    Kim, DW
    Lee, TJ
    Choi, YC
    Park, YS
    Kim, WS
    Lee, YH
    Choi, WB
    Lee, NS
    Kim, JM
    Choi, YG
    Yu, SC
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (12) : 1721 - 1723
  • [22] Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube
    Lee, H
    Kang, YS
    Lee, PS
    Lee, JY
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 330 : 569 - 573
  • [23] Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications
    Li, YJ
    Sun, Z
    Lau, SP
    Chen, GY
    Tay, BK
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (11) : 1670 - 1672
  • [24] Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene
    Marangoni, R
    Serp, P
    Feurer, R
    Kihn, Y
    Kalck, P
    Vahlas, C
    [J]. CARBON, 2001, 39 (03) : 443 - 449
  • [25] High-yield, nondestructive purification and quantification method for multiwalled carbon nanotubes
    Murphy, R
    Coleman, JN
    Cadek, M
    McCarthy, B
    Bent, M
    Drury, A
    Barklie, RC
    Blau, WJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) : 3087 - 3091
  • [26] Electric-field-enhanced growth of carbon nanotubes for scanning probe microscopy
    Ono, T
    Miyashita, H
    Esashi, M
    [J]. NANOTECHNOLOGY, 2002, 13 (01) : 62 - 64
  • [27] Field electron emission from patterned nanostructured carbon films on sodalime glass substrates
    Park, KH
    Lee, KM
    Choi, S
    Lee, S
    Koh, KH
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (03): : 946 - 949
  • [28] CVD synthesis of carbon nanotubes
    Qin, LC
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (06) : 457 - 459
  • [29] Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition
    Qin, LC
    Zhou, D
    Krauss, AR
    Gruen, DM
    [J]. APPLIED PHYSICS LETTERS, 1998, 72 (26) : 3437 - 3439
  • [30] Polarized Raman study of aligned multiwalled carbon nanotubes
    Rao, AM
    Jorio, A
    Pimenta, MA
    Dantas, MSS
    Saito, R
    Dresselhaus, G
    Dresselhaus, MS
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (08) : 1820 - 1823