Equipartition of the eigenfunctions of quantized ergodic maps on the torus

被引:105
作者
Bouzouina, A [1 ]
DeBievre, S [1 ]
机构
[1] UNIV PARIS 07,LAB PHYS THEOR & MATH,F-75251 PARIS,FRANCE
关键词
D O I
10.1007/BF02104909
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a simple proof of the equipartition of the eigenfunctions of a class of quantized ergodic area-preserving maps on the torus. Examples are the irrational translations, the skew translations, the hyperbolic automorphisms and some of their perturbations.
引用
收藏
页码:83 / 105
页数:23
相关论文
共 28 条
[11]   CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS [J].
ESPOSTI, MD ;
GRAFFI, S ;
ISOLA, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :471-507
[12]   MOYAL QUANTIZATION WITH COMPACT SYMMETRY GROUPS AND NONCOMMUTATIVE HARMONIC-ANALYSIS [J].
FIGUEROA, H ;
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2664-2671
[13]  
FOLLAND G, 1988, HARMONIC ANAL PHASE
[14]   ERGODIC PROPERTIES OF EIGENFUNCTIONS FOR THE DIRICHLET PROBLEM [J].
GERARD, P ;
LEICHTNAM, E .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (02) :559-607
[15]  
Hannay J. H., 1980, Physica D, V1D, P267, DOI 10.1016/0167-2789(80)90026-3
[16]   ERGODICITY AND SEMICLASSICAL LIMITS [J].
HELFFER, B ;
MARTINEZ, A ;
ROBERT, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (02) :313-326
[17]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167
[18]   CHAOS-REVEALING MULTIPLICATIVE REPRESENTATION OF QUANTUM EIGENSTATES [J].
LEBOEUF, P ;
VOROS, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10) :1765-1774
[19]  
Mane R., 1987, Ergodic theory and differentiable dynamics
[20]  
PERELOMOV A, 1985, GEN COHERENT STATES