Self-assembling peptide scaffolds for regenerative medicine

被引:424
作者
Matson, John B. [1 ]
Stupp, Samuel I. [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Univ, Inst BioNanotechnol Med, Chicago, IL 60611 USA
[2] Northwestern Univ, Dept Chem, Chicago, IL 60611 USA
[3] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[4] Northwestern Univ, Dept Mat Sci & Engn, Chicago, IL 60611 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
3-DIMENSIONAL CELL-CULTURE; SPINAL-CORD-INJURY; BETA-SHEET TAPES; AMPHIPHILE NANOFIBERS; CONTROLLED-RELEASE; DESIGNED PEPTIDE; HYDROGELS; MOLECULES; ENZYME; DIFFERENTIATION;
D O I
10.1039/c1cc15551b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomaterials made from self-assembling, short peptides and peptide derivatives have great potential to generate powerful new therapies in regenerative medicine. The high signaling capacity and therapeutic efficacy of peptidic scaffolds has been established in several animal models, and the development of more complex, hierarchical structures based on peptide materials is underway. This highlight discusses several classes of self-assembling peptide-based materials, including peptide amphiphiles, Fmoc-peptides, self-complementary ionic peptides, hairpin peptides, and others. The self-assembly designs, bioactive signalling strategies, and cell signalling capabilities of these bioactive materials are reported. The future challenges of the field are also discussed, including short-term goals such as integration with biopolymers and traditional implants, and long term goals, such as immune system programming, subcellular targeting, and the development of highly integrated scaffold systems.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 93 条
[31]   Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers [J].
Ghanaati, Shahram ;
Webber, Matthew J. ;
Unger, Ronald E. ;
Orth, Carina ;
Hulvat, James F. ;
Kiehna, Sarah E. ;
Barbeck, Mike ;
Rasic, Angela ;
Stupp, Samuel I. ;
Kirkpatrick, C. James .
BIOMATERIALS, 2009, 30 (31) :6202-6212
[32]   Electrostatic Control of Bioactivity [J].
Goldberger, Joshua E. ;
Berns, Eric J. ;
Bitton, Ronit ;
Newcomb, Christina J. ;
Stupp, Samuel I. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (28) :6292-6295
[33]   Tunable Mechanics of Peptide Nanofiber Gels [J].
Greenfield, Megan A. ;
Hoffman, Jessica R. ;
de la Cruz, Monica Olvera ;
Stupp, Samuel I. .
LANGMUIR, 2010, 26 (05) :3641-3647
[34]   Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles [J].
Guler, Mustafa O. ;
Hsu, Lorraine ;
Soukasene, Stephen ;
Harrington, Daniel A. ;
Hulvat, James F. ;
Stupp, Samuel I. .
BIOMACROMOLECULES, 2006, 7 (06) :1855-1863
[35]   Self-assembly and mineralization of peptide-amphiphile nanofibers [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
SCIENCE, 2001, 294 (5547) :1684-1688
[36]   Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5133-5138
[37]   Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds [J].
Holmes, TC ;
de Lacalle, S ;
Su, X ;
Liu, GS ;
Rich, A ;
Zhang, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6728-6733
[38]   Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration [J].
Horii, Akihiro ;
Wang, Xiumei ;
Gelain, Fabrizio ;
Zhang, Shuguang .
PLOS ONE, 2007, 2 (02)
[39]   Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core [J].
Hsu, Lorraine ;
Cvetanovich, Gregory L. ;
Stupp, Samuel I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (12) :3892-3899
[40]   Dependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure [J].
Hule, Rohan A. ;
Nagarkar, Radhika P. ;
Hammouda, Boualem ;
Schneider, Joel P. ;
Pochan, Darrin J. .
MACROMOLECULES, 2009, 42 (18) :7137-7145