Decoupling of CVD graphene by controlled oxidation of recrystallized Cu

被引:91
作者
Lu, Ang-Yu [1 ,2 ]
Wei, Sung-Yen [2 ]
Wu, Chih-Yu [2 ]
Hernandez, Yenny [3 ]
Chen, Tzu-Yin [1 ]
Liu, Te-Huan [1 ]
Pao, Chun-Wei [1 ]
Chen, Fu-Rong [2 ]
Li, Lain-Jong [1 ]
Juang, Zhen-Yu [1 ,2 ]
机构
[1] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[2] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
LAYER GRAPHENE; LARGE-AREA; FILMS;
D O I
10.1039/c2ra01281b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large-area graphene grown by chemical vapour deposition (CVD) is promising for applications; however, the interaction between graphene and the substrate is still not well understood. In this report, we use a combination of two non-destructive characterization techniques, i. e., electron backscatter diffraction (EBSD) and Raman mapping to locally probe the interface between graphene and copper lattices without removing graphene. We conclude that the crystal structure of the Cu grains under graphene layers is governed by two competing processes: (1) graphene induced Cu surface reconstruction favoring the formation of Cu(100) orientation, and (2) recrystallization from bulk Cu favoring Cu(111) formation. The underlying Cu grains, regardless of reconstruction or recrystallization, induce a large hydrostatic compression to the graphene lattice. Interestingly, the strong interaction could be decoupled by allowing the intercalation of a thin cuprous oxide interfacial-layer. The Cu2O layer is mechanically and chemically weak; hence, graphene films can be detached and transferred to arbitrary substrates and the Cu substrates could be re-used for graphene growth.
引用
收藏
页码:3008 / 3013
页数:6
相关论文
共 38 条
[1]  
[Anonymous], PHYS REV LETT
[2]  
[Anonymous], PHYS REV B
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]  
Cancado L.G., 2006, APPL PHYS LETT, P88
[7]   Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy [J].
Chen, Shanshan ;
Brown, Lola ;
Levendorf, Mark ;
Cai, Weiwei ;
Ju, Sang-Yong ;
Edgeworth, Jonathan ;
Li, Xuesong ;
Magnuson, Carl W. ;
Velamakanni, Aruna ;
Piner, Richard D. ;
Kang, Junyong ;
Park, Jiwoong ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (02) :1321-1327
[8]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[9]   Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J].
Cote, Laura J. ;
Kim, Franklin ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) :1043-1049
[10]   Through-mask anodic patterning of copper surfaces and film stability in biological media [J].
Dai, HX ;
Thai, CK ;
Sarikaya, M ;
Baneyx, F ;
Schwartz, DT .
LANGMUIR, 2004, 20 (08) :3483-3486