A machine-learning approach to combined evidence validation of genome assemblies

被引:13
作者
Choi, Jeong-Hyeon [1 ]
Kim, Sun [1 ,2 ]
Tang, Haixu [1 ,2 ]
Andrews, Justen [1 ,3 ]
Gilbert, Don G. [1 ]
Colbourne, John K. [1 ]
机构
[1] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA
[2] Indiana Univ, Sch Informat, Bloomington, IN 47405 USA
[3] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btm608
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: While it is common to refer to 'the genome sequence' as if it were a single, complete and contiguous DNA string, it is in fact an assembly of millions of small, partially overlapping DNA fragments. Sophisticated computer algorithms (assemblers and scaffolders) merge these DNA fragments into contigs, and place these contigs into sequence scaffolds using the paired-end sequences derived from large-insert DNA libraries. Each step in this automated process is susceptible to producing errors; hence, the resulting draft assembly represents (in practice) only a likely assembly that requires further validation. Knowing which parts of the draft assembly are likely free of errors is critical if researchers are to draw reliable conclusions from the assembled sequence data. Results: We develop a machine-learning method to detect assembly errors in sequence assemblies. Several in silico measures for assembly validation have been proposed by various researchers. Using three benchmarking Drosophila draft genomes, we evaluate these techniques along with some new measures that we propose, including the good-minus-bad coverage (GMB), the good-to-bad-ratio (RGB), the average Z-score (AZ) and the average absolute Z-score (ASZ). Our results show that the GMB measure performs better than the others in both its sensitivity and its specificity for assembly error detection. Nevertheless, no single method performs sufficiently well to reliably detect genomic regions requiring attention for further experimental verification. To utilize the advantages of all these measures, we develop a novel machine learning approach that combines these individual measures to achieve a higher prediction accuracy (i.e. greater than 90%). Our combined evidence approach avoids the difficult and often ad hoc selection of many parameters the individual measures require, and significantly improves the overall precisions on the benchmarking data sets.
引用
收藏
页码:744 / 750
页数:7
相关论文
共 31 条
[21]  
Samanta Manoj Pratim, 2007, Methods Mol Biol, V377, P163
[22]   NUCLEOTIDE-SEQUENCE OF BACTERIOPHAGE-GAMMA DNA [J].
SANGER, F ;
COULSON, AR ;
HONG, GF ;
HILL, DF ;
PETERSEN, GB .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 162 (04) :729-773
[23]   Hawkeye: an interactive visual analytics tool for genome assemblies [J].
Schatz, Michael C. ;
Phillippy, Adam M. ;
Shneiderman, Ben ;
Salzberg, Steven L. .
GENOME BIOLOGY, 2007, 8 (03)
[24]   Assessing the quality of finished genomic sequence [J].
Schmutz, J ;
Wheeler, J ;
Grimwood, J ;
Dickson, M ;
Myers, RM .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2003, 68 :31-37
[25]   Quality assessment of the human genome sequency [J].
Schmutz, J ;
Wheeler, J ;
Grimwood, J ;
Dickson, M ;
Yang, DJ ;
Caoile, C ;
Bajorek, E ;
Black, S ;
Chan, YM ;
Denys, M ;
Escobar, J ;
Flowers, D ;
Fotopulos, D ;
Garcia, C ;
Gomez, M ;
Gonzales, E ;
Haydu, L ;
Lopez, F ;
Ramirez, L ;
Retterer, J ;
Rodriguez, A ;
Rogers, S ;
Salazar, A ;
Tsai, M ;
Myers, RM .
NATURE, 2004, 429 (6990) :365-368
[26]   Genome assembly, rearrangement, and repeats [J].
Tang, Haixu .
CHEMICAL REVIEWS, 2007, 107 (08) :3391-3406
[27]   The sequence of the human genome [J].
Venter, JC ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Mural, RJ ;
Sutton, GG ;
Smith, HO ;
Yandell, M ;
Evans, CA ;
Holt, RA ;
Gocayne, JD ;
Amanatides, P ;
Ballew, RM ;
Huson, DH ;
Wortman, JR ;
Zhang, Q ;
Kodira, CD ;
Zheng, XQH ;
Chen, L ;
Skupski, M ;
Subramanian, G ;
Thomas, PD ;
Zhang, JH ;
Miklos, GLG ;
Nelson, C ;
Broder, S ;
Clark, AG ;
Nadeau, C ;
McKusick, VA ;
Zinder, N ;
Levine, AJ ;
Roberts, RJ ;
Simon, M ;
Slayman, C ;
Hunkapiller, M ;
Bolanos, R ;
Delcher, A ;
Dew, I ;
Fasulo, D ;
Flanigan, M ;
Florea, L ;
Halpern, A ;
Hannenhalli, S ;
Kravitz, S ;
Levy, S ;
Mobarry, C ;
Reinert, K ;
Remington, K ;
Abu-Threideh, J ;
Beasley, E .
SCIENCE, 2001, 291 (5507) :1304-+
[28]   Initial sequencing and comparative analysis of the mouse genome [J].
Waterston, RH ;
Lindblad-Toh, K ;
Birney, E ;
Rogers, J ;
Abril, JF ;
Agarwal, P ;
Agarwala, R ;
Ainscough, R ;
Alexandersson, M ;
An, P ;
Antonarakis, SE ;
Attwood, J ;
Baertsch, R ;
Bailey, J ;
Barlow, K ;
Beck, S ;
Berry, E ;
Birren, B ;
Bloom, T ;
Bork, P ;
Botcherby, M ;
Bray, N ;
Brent, MR ;
Brown, DG ;
Brown, SD ;
Bult, C ;
Burton, J ;
Butler, J ;
Campbell, RD ;
Carninci, P ;
Cawley, S ;
Chiaromonte, F ;
Chinwalla, AT ;
Church, DM ;
Clamp, M ;
Clee, C ;
Collins, FS ;
Cook, LL ;
Copley, RR ;
Coulson, A ;
Couronne, O ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Daly, M ;
David, R ;
Davies, J ;
Delehaunty, KD ;
Deri, J ;
Dermitzakis, ET .
NATURE, 2002, 420 (6915) :520-562
[29]   Validation of S. pombe sequence assembly by microarray hybridization [J].
West, J ;
Healy, J ;
Wigler, M ;
Casey, W ;
Mishra, B .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (01) :1-20
[30]  
Witten I., 2001, DATA MINING