Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability

被引:344
作者
Zhu, Jixin [1 ]
Zhu, Ting [2 ]
Zhou, Xiaozhu [1 ]
Zhang, Yanyan [1 ]
Lou, Xiong Wen [2 ]
Chen, Xiaodong [1 ]
Zhang, Hua [1 ]
Hng, Huey Hoon [1 ]
Yan, Qingyu [1 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
[3] Nanyang Technol Univ, Energy Res Inst NTU, Singapore 637459, Singapore
关键词
LI-ION BATTERIES; ONE-POT SYNTHESIS; ANODE MATERIALS; REVERSIBLE CAPACITY; NEGATIVE ELECTRODE; CYCLIC PERFORMANCE; NANOSTRUCTURES; NANOPARTICLES; REDUCTION; SPHERES;
D O I
10.1039/c0nr00744g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90(th) cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90(th) cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300(th) cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.
引用
收藏
页码:1084 / 1089
页数:6
相关论文
共 40 条
[1]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[2]   An understanding of anomalous capacity of nano-sized CoO anode for advanced Li-ion battery [J].
Chen, C. H. ;
Hwang, B. J. ;
Do, J. S. ;
Weng, J. H. ;
Venkateswarlu, M. ;
Cheng, M. Y. ;
Santhanam, R. ;
Ragavendran, K. ;
Lee, J. F. ;
Chen, J. M. ;
Liu, D. G. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) :496-498
[3]   One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability [J].
Chen, Ge ;
Wang, Zhenyao ;
Xia, Dingguo .
CHEMISTRY OF MATERIALS, 2008, 20 (22) :6951-6956
[4]   Combination of Lightweight Elements and Nanostructured Materials for Batteries [J].
Chen, Jun ;
Cheng, Fangyi .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :713-723
[5]   Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction [J].
Chen, Jun Song ;
Lou, Xiong Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (12) :2332-2335
[6]   Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery [J].
Cheng, Ming-Yao ;
Hwang, Bing-Joe .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4977-4983
[7]   Fe2O3-filled carbon nanotubes as a negative electrode for an Fe-air battery [J].
Hang, Bui Thi ;
Hayashi, Hiroshi ;
Yoon, Seong-Ho ;
Okada, Shigeto ;
Yamaki, Jun-ichi .
JOURNAL OF POWER SOURCES, 2008, 178 (01) :393-401
[8]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[9]   Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes [J].
Ji, Liwen ;
Zhang, Xiangwu .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) :1146-1149
[10]   Critical size of a nano SnO2 electrode for Li-secondary battery [J].
Kim, C ;
Noh, M ;
Choi, M ;
Cho, J ;
Park, B .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3297-3301