Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states

被引:128
作者
Saitoh, Takashi
Igura, Mayumi
Obita, Takayuki
Ose, Toyoyuki
Kojima, Rieko
Maenaka, Katsumi
Endo, Toshiya
Kohda, Daisuke
机构
[1] Kyushu Univ, Med Inst Bioregulat, Div Struct Biol, Higashi Ku, Fukuoka 8128582, Japan
[2] Kyushu Univ, Higashi Ku, Fukuoka 812, Japan
[3] Nagoya Univ, Grad Sch Med, Dept Chem, Nagoya, Aichi, Japan
关键词
crystallography; mitochondrial protein import; NMR relaxation analysis; presequence; Tom20;
D O I
10.1038/sj.emboj.7601888
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most mitochondrial proteins are synthesized in the cytosol and imported into mitochondria. The N-terminal presequences of mitochondrial-precursor proteins contain a diverse consensus motif (phi chi chi phi phi, phi is hydrophobic and chi is any amino acid), which is recognized by the Tom20 protein on the mitochondrial surface. To reveal the structural basis of the broad selectivity of Tom20, the Tom20 presequence complex was crystallized. Tethering a presequence peptide to Tom20 through a disulfide bond was essential for crystallization. Unexpectedly, the two crystals with different linker designs provided unique relative orientations of the presequence with respect to Tom20, and neither configuration could fully account for the hydrophobic preference at the three hydrophobic positions of the consensus motif. We propose the existence of a dynamic equilibrium in solution among multiple states including the two bound states. In accordance, NMR N-15 relaxation analyses suggested motion on a sub-millisecond timescale at the Tom20-presequence interface. We suggest that the dynamic, multiple-mode interaction is the molecular mechanism facilitating the broadly selective specificity of the Tom20 receptor toward diverse mitochondrial presequences.
引用
收藏
页码:4777 / 4787
页数:11
相关论文
共 49 条
[41]   The unfolding story of three-dimensional domain swapping [J].
Rousseau, F ;
Schymkowitz, JWH ;
Itzhaki, LS .
STRUCTURE, 2003, 11 (03) :243-251
[42]   The coactivator LXXLL nuclear receptor recognition motif [J].
Savkur, RS ;
Burris, TP .
JOURNAL OF PEPTIDE RESEARCH, 2004, 63 (03) :207-212
[43]   Common principles of protein translocation across membranes [J].
Schatz, G ;
Dobberstein, B .
SCIENCE, 1996, 271 (5255) :1519-1526
[44]   The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen [J].
Shiau, AK ;
Barstad, D ;
Loria, PM ;
Cheng, L ;
Kushner, PJ ;
Agard, DA ;
Greene, GL .
CELL, 1998, 95 (07) :927-937
[45]   MOM19, AN IMPORT RECEPTOR FOR MITOCHONDRIAL PRECURSOR PROTEINS [J].
SOLLNER, T ;
GRIFFITHS, G ;
PFALLER, R ;
PFANNER, N ;
NEUPERT, W .
CELL, 1989, 59 (06) :1061-1070
[46]   Automated MAD and MIR structure solution [J].
Terwilliger, TC ;
Berendzen, J .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 :849-861
[47]   Maximum-likelihood density modification [J].
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2000, 56 :965-972
[48]   Protein backbone dynamics and N-15 chemical shift anisotropy from quantitative measurement of relaxation interference effects [J].
Tjandra, N ;
Szabo, A ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (29) :6986-6991
[49]   MITOCHONDRIAL TARGETING SEQUENCES MAY FORM AMPHIPHILIC HELICES [J].
VONHEIJNE, G .
EMBO JOURNAL, 1986, 5 (06) :1335-1342