Local State-of-Charge Mapping of Lithium-Ion Battery Electrodes

被引:101
作者
Nanda, Jagjit [1 ]
Remillard, Jeffrey [2 ]
O'Neill, Ann [2 ]
Bernardi, Dawn [2 ]
Ro, Tina [2 ]
Nietering, Kenneth E. [2 ]
Go, Joo-Young [3 ]
Miller, Ted J. [2 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Ford Motor Co, Res & Adv Engn, Dearborn, MI 48121 USA
[3] SB LiMot, R&D Team, Yongin 446577, Gyeonggi Do, South Korea
关键词
LIFEPO4 COMPOSITE ELECTRODES; LI-ION; CATHODE MATERIALS; RAMAN MICROSCOPY; IN-SITU; CELLS;
D O I
10.1002/adfm.201100157
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li(1-x)(Ni(y)Co(z)Al(1-y-z))O(2), maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.
引用
收藏
页码:3282 / 3290
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2007, BAS RES NEEDS EL EN
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[4]  
Carslaw H.S., 1986, Conduction of Heat In Solids, V2nde
[5]   Continuity and performance in composite electrodes [J].
Chen, Guoying ;
Richardson, Thomas J. .
JOURNAL OF POWER SOURCES, 2010, 195 (16) :5387-5390
[6]   Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode [J].
Dees, Dennis W. ;
Kawauchi, Shigehiro ;
Abraham, Daniel P. ;
Prakash, Jai .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :263-268
[7]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[8]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[9]   Electronic and Ionic Wirings Versus the Insertion Reaction Contributions to the Polarization in LiFePO4 Composite Electrodes [J].
Fongy, C. ;
Jouanneau, S. ;
Guyomard, D. ;
Badot, J. C. ;
Lestriez, B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :A1347-A1353
[10]   Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes [J].
Fongy, C. ;
Gaillot, A. -C. ;
Jouanneau, S. ;
Guyomard, D. ;
Lestriez, B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A885-A891