Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

被引:1089
作者
Nozik, A. J. [1 ,2 ]
Beard, M. C. [1 ]
Luther, J. M. [1 ]
Law, M. [3 ]
Ellingson, R. J. [4 ]
Johnson, J. C. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[3] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[4] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
关键词
HOT-CARRIER RELAXATION; PBSE NANOCRYSTAL SOLIDS; LIGHT-EMITTING-DIODES; IMPACT IONIZATION; ENERGY-RELAXATION; ELECTRON RELAXATION; PHONON BOTTLENECK; LUMINESCENCE PROPERTIES; COLLOIDAL NANOCRYSTALS; CHARGE SEPARATION;
D O I
10.1021/cr900289f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several classes of semiconductor quantum dots (QD), including groups II-VI, III-V, IV-VI, IV, and their alloys as well as various intergroup and intragroup core-shell configurations, and nanocrystal shapes have been synthesized. One approach to enhance efficiency in QD-based PV cells compared to conventional bulk semiconductor-based PV is to create efficient multiple exciton generation from a large fraction of the photons in the solar spectrum. Three generic types of QD solar cells that could utilize MEG to enhance conversion efficiency can be defined. They include photoelectrodes composed of QD arrays that form either Schottky junctions with a metal layer, a hetero p-n junction with a second NC semiconductor layer, or the i-region of a p-i-n device, QD-sensitized nanocrystalline TiO2 films, and QDs dispersed into a multiphase mixture of electron- and hole-conducting matrices, such as C60 and hole conducting polymers.
引用
收藏
页码:6873 / 6890
页数:18
相关论文
共 228 条
[1]  
Abdelsayed V, 2008, NANOPARTICLES SYNTHE
[2]   Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots [J].
Adler, F ;
Geiger, M ;
Bauknecht, A ;
Scholz, F ;
Schweizer, H ;
Pilkuhn, MH ;
Ohnesorge, B ;
Forchel, A .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (07) :4019-4026
[3]   Self-assembled InAs/GaAs quantum dots under resonant excitation [J].
Adler, F ;
Geiger, M ;
Bauknecht, A ;
Haase, D ;
Ernst, P ;
Dornen, A ;
Scholz, F ;
Schweizer, H .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (03) :1631-1636
[4]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[5]  
[Anonymous], OPTICS SEMICONDUCTOR
[6]   Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles [J].
Arango, AC ;
Carter, SA ;
Brock, PJ .
APPLIED PHYSICS LETTERS, 1999, 74 (12) :1698-1700
[7]   Semiconductor wires and ribbons for high-performance flexible electronics [J].
Baca, Alfred J. ;
Ahn, Jong-Hyun ;
Sun, Yugang ;
Meitl, Matthew A. ;
Menard, Etienne ;
Kim, Hoon-Sik ;
Choi, Won Mook ;
Kim, Dae-Hyeong ;
Huang, Young ;
Rogers, John A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (30) :5524-5542
[8]  
BARYSHEV NS, 1974, SOV PHYS SEMICOND+, V8, P192
[9]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496
[10]   Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion [J].
Beard, Matthew C. ;
Ellingson, Randy J. .
LASER & PHOTONICS REVIEWS, 2008, 2 (05) :377-399