Physical electrochemistry of nanostructured devices

被引:196
作者
Bisquert, Juan [1 ]
机构
[1] Univ Jaume 1, Dept Fis, Catello 12071, Spain
关键词
D O I
10.1039/b709316k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This Perspective reviews recent developments in experimental techniques and conceptual methods applied to the electrochemical properties of metal-oxide semiconductor nanostructures and organic conductors, such as those used in dye-sensitized solar cells, high-energy batteries, sensors, and electrochromic devices. The aim is to provide a broad view of the interpretation of electrochemical and optoelectrical measurements for semiconductor nanostructures (sintered colloidal particles, nanorods, arrays of quantum dots, etc.) deposited or grown on a conducting substrate. The Fermi level displacement by potentiostatic control causes a broad change of physical properties such as the hopping conductivity, that can be investigated over a very large variation of electron density. In contrast to traditional electrochemistry, we emphasize that in nanostructured devices we must deal with systems that depart heavily from the ideal, Maxwell-Boltzmann statistics, due to broad distributions of states (energy disorder) and interactions of charge carriers, therefore the electrochemical analysis must be aided by thermodynamics and statistical mechanics. We discuss in detail the most characteristic densities of states, the chemical capacitance, and the transport properties, specially the chemical diffusion coefficient, mobility, and generalized Einstein relation.
引用
收藏
页码:49 / 72
页数:24
相关论文
共 223 条
  • [131] Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells
    Mora-Seró, I
    Bisquert, J
    Fabregat-Santiago, F
    Garcia-Belmonte, G
    Zoppi, G
    Durose, K
    Proskuryakov, Y
    Oja, I
    Belaidi, A
    Dittrich, T
    Tena-Zaera, R
    Katty, A
    Lévy-Clément, C
    Barrioz, V
    Irvine, SJC
    [J]. NANO LETTERS, 2006, 6 (04) : 640 - 650
  • [132] Determination of carrier density of ZnO nanowires by electrochemical techniques
    Mora-Sero, Ivan
    Fabregat-Santiago, Francisco
    Denier, Benjamin
    Bisquert, Juan
    Tena-Zaera, Ramon
    Elias, Jamil
    Levy-Clement, Claude
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (20)
  • [133] Mott N. F., 1968, Journal of Non-Crystalline Solids, V1, P1, DOI 10.1016/0022-3093(68)90002-1
  • [134] Mott NF., 2012, Electronic Processes in Non-Crystalline Materials, DOI DOI 10.1063/1.3071145
  • [135] SURFACE-DIFFUSION AND CONTINUOUS-PHASE TRANSITIONS IN ADSORBED OVERLAYERS
    MYSHLYAVTSEV, AV
    STEPANOV, AA
    UEBING, C
    ZHDANOV, VP
    [J]. PHYSICAL REVIEW B, 1995, 52 (08) : 5977 - 5984
  • [136] Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption
    Nakade, S
    Saito, Y
    Kubo, W
    Kanzaki, T
    Kitamura, T
    Wada, Y
    Yanagida, S
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (09) : 804 - 808
  • [137] Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells
    Nakade, S
    Saito, Y
    Kubo, W
    Kitamura, T
    Wada, Y
    Yanagida, S
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (33) : 8607 - 8611
  • [138] Electron transport in electrodes consisting of metal oxide nano-particles filled with electrolyte solution
    Nakade, S
    Kambe, S
    Matsuda, M
    Saito, Y
    Kitamura, T
    Wada, Y
    Yanagida, S
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) : 210 - 214
  • [139] Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes
    Nelson, J
    [J]. PHYSICAL REVIEW B, 1999, 59 (23): : 15374 - 15380
  • [140] Generalized Einstein relation for disordered semiconductors with exponential distributions of tail states and square-root distributions of band states
    Nguyen, TH
    O'Leary, SK
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (10) : 1998 - 2000