Preparation and characterisation of dry thin native protein trehalose films on titanium-coated cyclo-olefin polymer (COP) foil generated by spin-coating/drying process and applied for protein transfer by Laser-Induced-Forward Transfer (LIFT)

被引:2
作者
Genov, S. [1 ]
Riester, D. [2 ]
Hirth, T. [1 ,3 ]
Tovar, G. [1 ,3 ]
Borchers, K. [3 ]
Weber, A. [1 ,3 ]
机构
[1] Univ Stuttgart, Inst Interfacial Engn, D-70569 Stuttgart, Germany
[2] Fraunhofer Inst Laser Technol ILT, D-52074 Aachen, Germany
[3] Fraunhofer Inst Interfacial Engn & Biotechnol IGB, D-70569 Stuttgart, Germany
关键词
Native proteins; Trehalose; LIFT; Homogenous thin layers; DEPOSITION; INHIBITION; ADSORPTION; PATTERNS; SUGAR; STATE;
D O I
10.1016/j.cep.2010.11.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Laser-Induced-Forward Transfer (LIFT) is a non-contact method for transferring bioactive substances such as proteins from a so-called LIFT target, here a titanium-coated cyclo-olefin polymer (COP) foil, to a surface of a solid work piece, e.g. a medical implant. The quality of the surface coating of the LIFT target, i.e. its homogeneity and the bioactivity of the ingredients to be transferred, is crucial for the quality and the efficiency of the overall process. Here, aqueous trehalose solutions containing the proteins streptavidin, green fluorescent protein (GFP), and bovine serum albumin were used in a spin-coating/drying process to render dry thin native protein trehalose films on titanium-coated COP foils. The homogeneity of the layer thicknesses was characterised by spectroscopic ellipsometry and the homogeneity of the GFP distribution within the layer was monitored by fluorescence scan analyses. The bioactivity of the embedded proteins was probed after short- and long-term storage by FT-IR spectroscopy in spectral reflection method and biological activity tests based on fluorescence scan analyses. After application of the LIFT process, the transferred proteins were tested in their bioactivity by fluorescence scan analyses and their topology by AFM analysis, proving that highly functional LIFT targets can be prepared by the chosen method. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:558 / 564
页数:7
相关论文
共 37 条
[1]   Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding [J].
Allison, SD ;
Chang, B ;
Randolph, TW ;
Carpenter, JF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 365 (02) :289-298
[2]   FACTORS AFFECTING SHORT-TERM AND LONG-TERM STABILITIES OF PROTEINS [J].
ARAKAWA, T ;
PRESTRELSKI, SJ ;
KENNEY, WC ;
CARPENTER, JF .
ADVANCED DRUG DELIVERY REVIEWS, 1993, 10 (01) :1-28
[3]   Laser direct-write techniques for printing of complex materials [J].
Arnold, Craig B. ;
Serra, Pere ;
Pique, Alberto .
MRS BULLETIN, 2007, 32 (01) :23-31
[4]   Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns [J].
Barron, JA ;
Wu, P ;
Ladouceur, HD ;
Ringeisen, BR .
BIOMEDICAL MICRODEVICES, 2004, 6 (02) :139-147
[5]   What vibrations tell us about proteins [J].
Barth, A ;
Zscherp, C .
QUARTERLY REVIEWS OF BIOPHYSICS, 2002, 35 (04) :369-430
[6]   METAL-DEPOSITION FROM A SUPPORTED METAL-FILM USING AN EXCIMER LASER [J].
BOHANDY, J ;
KIM, BF ;
ADRIAN, FJ .
JOURNAL OF APPLIED PHYSICS, 1986, 60 (04) :1538-1539
[7]   Microstructured layers of spherical biofunctional core-shell nanoparticles provide enlarged reactive surfaces for protein microarrays [J].
Borchers, K ;
Weber, A ;
Brunner, H ;
Tovar, GEM .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 383 (05) :738-746
[8]   LYSOZYME FILM HYDRATION EVENTS - IR AND GRAVIMETRIC STUDY [J].
CARERI, G ;
GIANSANTI, A ;
GRATTON, E .
BIOPOLYMERS, 1979, 18 (05) :1187-1203
[9]   STABILIZATION OF PHOSPHOFRUCTOKINASE DURING AIR-DRYING WITH SUGARS AND SUGAR TRANSITION-METAL MIXTURES [J].
CARPENTER, JF ;
MARTIN, B ;
CROWE, LM ;
CROWE, JH .
CRYOBIOLOGY, 1987, 24 (05) :455-464
[10]   AN INFRARED SPECTROSCOPIC STUDY OF THE INTERACTIONS OF CARBOHYDRATES WITH DRIED PROTEINS [J].
CARPENTER, JF ;
CROWE, JH .
BIOCHEMISTRY, 1989, 28 (09) :3916-3922