Effect of asymmetry on the loss of chaos synchronization

被引:14
作者
Kim, SY [1 ]
Lim, W [1 ]
机构
[1] Kangwon Natl Univ, Dept Phys, Chunchon 200701, Kangwon Do, South Korea
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 01期
关键词
D O I
10.1103/PhysRevE.64.016211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the effect of asymmetry of coupling on the bifurcation mechanism for the loss of synchronous chaos in coupled systems. It is found that only when the symmetry-breaking pitchfork bifurcations take part in the process of the synchronization loss for the case of symmetric coupling, the asymmetry changes the bifurcation scenarios of the desynchronization. For the case of weak coupling, pitchfork bifurcations of asynchronous periodic saddles are replaced by saddle-node bifurcations, while for the case of strong coupling, pitchfork bifurcations of synchronous periodic saddles transform to transcritical bifurcations. The effects of the saddle-node and transcritical bifurcations for the weak asymmetry are similar to those of the pitchfork bifurcations for the symmetric-coupling case. However, with increasing the "degree" of the asymmetry, their effects change qualitatively, and eventually become similar to those for the extreme case of unidirectional asymmetric coupling.
引用
收藏
页码:12 / 016211
页数:12
相关论文
共 37 条
[1]  
Abraham R. H., 1997, Chaos in Discrete Dynamical Systems, P41
[2]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[3]   SPATIAL COHERENCE AND TEMPORAL CHAOS IN MACROSCOPIC SYSTEMS WITH ASYMMETRICAL COUPLINGS [J].
ARANSON, I ;
GOLOMB, D ;
SOMPOLINSKY, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3495-3498
[4]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[5]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[6]   Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits [J].
Astakhov, V ;
Shabunin, A ;
Kapitaniak, T ;
Anishchenko, V .
PHYSICAL REVIEW LETTERS, 1997, 79 (06) :1014-1017
[7]   CONTROLLING EXTENDED SYSTEMS OF CHAOTIC ELEMENTS [J].
AUERBACH, D .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1184-1187
[8]   Role of invariant and minimal absorbing areas in chaos synchronization [J].
Bischi, GI ;
Gardini, L .
PHYSICAL REVIEW E, 1998, 58 (05) :5710-5719
[9]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[10]   SENSITIVE DEPENDENCE ON PARAMETERS IN NONLINEAR DYNAMICS [J].
FARMER, JD .
PHYSICAL REVIEW LETTERS, 1985, 55 (04) :351-354