The rate constant of polymer reversal inside a pore

被引:32
作者
Huang, Lei [1 ]
Makarov, Dmitrii E.
机构
[1] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2890006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Translocation of biopolymers through pores is implicated in many biological phenomena. Confinement within a pore often breaks ergodicity on experimental and/or biological time scales by creating large entropic barriers to conformational rearrangements of the chain. Here, we study one example of such hindered rearrangement, in which the chain reverses its direction inside a long pore. Our goal is twofold. First, we study the dependence of the time scale of polymer reversal on the pore size and on the polymer length. Second, we examine the ability of simple one-dimensional theories to quantitatively describe a transition in a system with a complex energy landscape by comparing them with the exact rate constant obtained using brute-force simulations and the forward flux sampling method. We find that one-dimensional transition state theory (TST) using the polymer extension along the pore axis as the reaction coordinate adequately accounts for the exponentially strong dependence of the reversal rate constant on the pore radius r and the polymer length N, while the transmission factor, i.e., the ratio of the exact rate and the TST approximation, has a much weaker power law r and N dependence. We have further attempted to estimate the transmission factor from Kramer's theory, which assumes the reaction coordinate dynamics to be governed by a Langevin equation. However, such an approximation was found to be inadequate. Finally, we examine the scaling behavior of the reversal rate constant with N and r and show that finite size effects are important even for chains with N up to several hundreds.
引用
收藏
页数:9
相关论文
共 78 条
[1]   Forward flux sampling-type schemes for simulating rare events: Efficiency analysis [J].
Allen, Rosalind J. ;
Frenkel, Daan ;
ten Wolde, Pieter Rein .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (19)
[2]   Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement [J].
Arnold, Axel ;
Bozorgui, Behnaz ;
Frenkel, Daan ;
Ha, Bae-Yeun ;
Jun, Suckjon .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (16)
[3]   Reconstructing potential energy functions from simulated force-induced unbinding processes [J].
Balsera, M ;
Stepaniants, S ;
Izrailev, S ;
Oono, Y ;
Schulten, K .
BIOPHYSICAL JOURNAL, 1997, 73 (03) :1281-1287
[4]   One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions [J].
Berezhkovskii, A ;
Szabo, A .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[5]   Diffusion in a tube of varying cross section: Numerical study of reduction to effective one-dimensional description [J].
Berezhkovskii, A. M. ;
Pustovoit, M. A. ;
Bezrukov, S. M. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (13)
[6]   Translocation of rodlike polymers through membrane channels [J].
Berezhkovskii, AM ;
Gopich, IV .
BIOPHYSICAL JOURNAL, 2003, 84 (02) :787-793
[7]   Transition path sampling: Throwing ropes over rough mountain passes, in the dark [J].
Bolhuis, PG ;
Chandler, D ;
Dellago, C ;
Geissler, PL .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2002, 53 :291-318
[8]   DYNAMICS OF CONFINED POLYMER-CHAINS [J].
BROCHARD, F ;
DEGENNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (01) :52-56
[9]   Self-avoiding flexible polymers under spherical confinement [J].
Cacciuto, Angelo ;
Luijten, Erik .
NANO LETTERS, 2006, 6 (05) :901-905
[10]   Mechanical and chemical unfolding of a single protein: A comparison [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fowler, SB ;
Marszalek, PE ;
Broedel, SE ;
Clarke, J ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3694-3699